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A discussion of the nature of intellectual work is a difficult task in any field, even
in fields which are not so far removed from the central area of our common human
intellectual effort as mathematics still is. A discussion of the nature of any intellectual
effort is difficult per se — at any rate, more difficult than the mere exercise of that
particular intellectual effort. It is harder to understand the mechanism of an airplane,
and the theories of the forces which lift and which propel it, than merely to ride in it, to
be elevated and transported by it — or even to steer it. It is exceptional that one should
be able to acquire the understanding of a process without having previously acquired
a deep familiarity with running it, with using it, before one has assimilated it in an
instinctive and empirical way.

Thus any discussion of the nature of intellectual effort in any field is difficult, unless
it presupposes an easy, routine familiarity with that field. In mathematics this limitation
becomes very severe, if the discussion is to be kept on a non-mathematical plane. The
discussion will then necessarily show some very bad features; points which are made
can never be properly documented, and a certain over-all superficiality of the discussion
becomes unavoidable.

I am very much aware of these shortcomings in what I am going to say, and I apol-
ogize in advance. Besides, the views which I am going to express are probably not
wholly shared by many other mathematicians — you will get one man’s not-too-well
systematized impressions and interpretations — and I can give you only very little help
in deciding how much they are to the point.

In spite of all these hedges, however, I must admit that it is an interesting and
challenging task to make the attempt and to talk to you about the nature of intellectual
effort in mathematics. I only hope that I will not fail too badly.

The most vitally characteristic fact about mathematics is, in my opinion, its quite
peculiar relationship to the natural sciences, or, more generally, to any science which
interprets experience on a higher than purely descriptive level.

Most people, mathematicians and others, will agree that mathematics is not an em-
pirical science, or at least that it is practiced in a manner which differs in several deci-
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sive respects from the techniques of the empirical sciences. And, yet, its development
is very closely linked with the natural sciences. One of its main branches, geometry,
actually started as a natural, empirical science. Some of the best inspirations of modern
mathematics (I believe, the best ones) clearly originated in the natural sciences. The
methods of mathematics pervade and dominate the “theoretical” divisions of the natural
sciences. In modern empirical sciences it has become more and more a major criterion
of success whether they have become accessible to the mathematical method or to the
near-mathematical methods of physics. Indeed, throughout the natural sciences an un-
broken chain of successive pseudomorphoses, all of them pressing toward mathematics,
and almost identified with the idea of scientific progress, has become more and more
evident. Biology becomes increasingly pervaded by chemistry and physics, chemistry
by experimental and theoretical physics, and physics by very mathematical forms of
theoretical physics.

There is a quite peculiar duplicity in the nature of mathematics. One has to realize
this duplicity, to accept it, and to assimilate it into one’s thinking on the subject. This
double face is the face of mathematics, and I do not believe that any simplified, unitarian
view of the thing is possible without sacrificing the essence.

I will therefore not attempt to present you with a unitarian version. I will attempt
to describe, as best I can, the multiple phenomenon which is mathematics.

It is undeniable that some of the best inspirations in mathematics — in those parts
of it which are as pure mathematics as one can imagine — have come from the natural
sciences. We will mention the two most monumental facts.

The first example is, as it should be, geometry. Geometry was the major part of
ancient mathematics. It is, with several of its ramifications, still one of the main divi-
sions of modem mathematics. There can be no doubt that its origin in antiquity was
empirical and that it began as a discipline not unlike theoretical physics today. Apart
from all other evidence, the very name “geometry” indicates this. Euclid’s postulational
treatment represents a great step away from empiricism, but it is not at all simple to
defend the position that this was the decisive and final step, producing an absolute
separation. That Euclid’s axiomatization does at some minor points not meet the mod-
ern requirements of absolute axiomatic rigour is of lesser importance in this respect.
What is more essential, is this: other disciplines, which are undoubtedly empirical, like
mechanics and thermodynamics, are usually presented in a more or less postulational
treatment, which in the presentation of some authors is hardly distinguishable from Eu-
clid’s procedure. The classic of theoretical physics in our time, Newton’s Principia, was,
in literary form as well as in the essence of some of its most critical parts, very much like
Euclid. Of course in all these instances there is behind the postulational presentation
the physical insight backing the postulates and the experimental verification support-
ing the theorems. But one might well argue that a similar interpretation of Euclid is
possible, especially from the viewpoint of antiquity, before geometry had acquired its
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present bimillennial stability and authority — an authority which the modern edifice of
theoretical physics is clearly lacking.

Furthermore, while the de-empirization of geometry has gradually progressed since
Euclid, it never became quite complete, not even in modern times. The discussion of
non-Euclidean geometry offers a good illustration of this. It also offers an illustration
of the ambivalence of mathematical thought. Since most of the discussion took place
on a highly abstract plane, it dealt with the purely logical problem whether the “fifth
postulate” of Euclid was a consequence of the others or not; and the formal conflict
was terminated by F Klein’s purely mathematical example, which showed how a piece
of a Euclidean plane could be made non-Euclidean by formally redefining certain basic
concepts. And yet the empirical stimulus was there from start to finish. The prime rea-
son, why, of all Euclid’s postulates, the fifth was questioned, was clearly the unempirical
character of the concept of the entire infinite plane which intervenes there, and there
only. The idea that in at least one significant sense-and in spite of all mathematico-
logical analyses-the decision for or against Euclid may have to be empirical, was cer-
tainly present in the mind of the greatest mathematician, Gauss. And after Bolyai,
Lobachevsky, Riemann, and Klein had obtained more abstracto, what we today consider
the formal resolution of the original controversy, empirics — or rather physics — nev-
ertheless, had the final say. The discovery of general relativity forced a revision of our
views on the relationship of geometry in an entirely new setting and with a quite new
distribution of the purely mathematical emphases, too. Finally, one more touch to com-
plete the picture of contrast. This last development took place in the same generation
which saw the complete de-empirization and abstraction of Euclid’s axiomatic method
in the hands of the modem axiomatic-logical mathematicians. And these two seemingly
conflicting attitudes are perfectly compatible in one mathematical mind; thus Hilbert
made important contributions to both axiomatic geometry and to general relativity.

The second example is calculus — or rather all of analysis, which sprang from it.
The calculus was the first achievement of modern mathematics, and it is difficult to
overestimate its importance. I think it defines more unequivocally than anything else
the inception of modem mathematics, and the system of mathematical analysis, which is
its logical development, still constitutes the greatest technical advance in exact thinking.

The origins of calculus are clearly empirical. Kepler’s first attempts at integration
were formulated as “dolichometry” — measurement of kegs — that is, volumetry for
bodies with curved surfaces. This is geometry, but post-Euclidean, and, at the epoch
in question, non-axiomatic, empirical geometry. Of this, Kepler was fully aware. The
main effort and the main discoveries, those of Newton and Leibniz, were of an explicitly
physical origin. Newton invented the calculus “of fluxions” essentially for the purposes
of mechanics — in fact, the two disciplines, calculus and mechanics, were developed by
him more or less together. The first formulations of the calculus were not even math-
ematically rigorous. An inexact, semi-physical formulation was the only one available

3



for over a hundred and fifty years after Newton! And yet, some of the most important
advances of analysis took place during this period, against this inexact, mathematically
inadequate background! Some of the leading mathematical spirits of the period were
clearly not rigorous, like Euler; but others, in the main, were, like Gauss or Jacobi. The
development was as confused and ambiguous as can be, and its relation to empiricism
was certainly not according to our present (or Euclid’s) ideas of abstraction and rigour.
Yet no mathematician would want to exclude it from the fold-that period produced
mathematics as first class as ever existed! And even after the reign of rigour was es-
sentially re-established with Cauchy, a very peculiar relapse into semi-physical methods
took place with Riemann. Riemann’s scientific personality itself is a most illuminating
example of the double nature of mathematics, as is the controversy of Riemann and
Weierstrass, but it would take me too far into technical matters if I went into specific
details. Since Weierstrass, analysis seems to have become completely abstract, rigorous,
and unempirical. But even this is not unqualifiedly true. The controversy about the
“foundations” of mathematics and logics, which took place during the last two genera-
tions, dispelled many illusions on this score.

This brings me to the third example which is relevant for the diagnosis. This exam-
ple, however, deals with the relationship of mathematics with philosophy or epistemol-
ogy rather than with the natural sciences. It illustrates in a very striking fashion that
the very concept of “absolute” mathematical rigour is not immutable. The variability of
the concept of rigour shows that something else besides mathematical abstraction must
enter into the makeup of mathematics. In analyzing the controversy about the “foun-
dations,” I have not been able to convince myself that the verdict must be in favour of
the empirical nature of this extra component. The case in favour of such an interpre-
tation is quite strong, at least in some phases of the discussion. But I do not consider
it absolutely cogent. Two things, however, are clear. First, that something nonmath-
ematical, somehow connected with the empirical sciences or with philosophy or both,
does enter essentially-and its non-empirical character could only be maintained if one
assumed that philosophy (or more specifically epistemology) can exist independently of
experience. (And this assumption is only necessary but not in itself sufficient). Second,
that the empirical origin of mathematics is strongly supported by instances like our two
earlier examples (geometry and calculus), irrespective of what the best interpretation
of the controversy about the “foundations” may be.

In analyzing the variability of the concept of mathematical rigour, I wish to lay the
main stress on the “foundations” controversy, as mentioned above. I would, however,
like to consider first briefly a secondary aspect of the matter. This aspect also strengthens
my argument, but I do consider it as secondary, because it is probably less conclusive
than the analysis of the “foundations” controversy. I am referring to the changes of
mathematical “style.” It is well known that the style in which mathematical proofs are
written has undergone considerable fluctuations. It is better to talk of fluctuations than
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of a trend because in some respects the difference between the present and certain
authors of the eighteenth or of the nineteenth centuries is greater than between the
present and Euclid. On the other hand, in other respects there has been remarkable
constancy. In fields in which differences are present, they are mainly differences in
presentation, which can be eliminated without bringing in any new ideas. However, in
many cases these differences are so wide that one begins to doubt whether authors who
“present their cases” in such divergent ways can have been separated by differences in
style, taste, and education only-whether they can really have had the same ideas as
to what constitutes mathematical rigour. Finally, in the extreme cases (e.g., in much
of the work of the late-eighteenth-century analysis, referred to above), the differences
are essential and can be remedied, if at all, only with the help of new and profound
theories, which it took up to a hundred years to develop. Some of the mathematicians
who worked in such, to us, unrigorous ways (or some of their contemporaries, who
criticized them) were well aware of their lack of rigour. Or to be more objective: Their
own desires as to what mathematical procedure should be were more in conformity
with our present views than their actions. But others — the greatest virtuoso of the
period, for example, Euler — seem to have acted in perfect good faith and to have been
quite satisfied with their own standards.

However, I do not want to press this matter further. I will turn instead to a per-
fectly clear-cut case, the controversy about the “foundations of mathematics.” In the
late nineteenth and the early twentieth centuries a new branch of abstract mathemat-
ics, G Cantor’s theory of sets, led into difficulties. That is, certain reasonings led to
contradictions; and, while these reasonings were not in the central and “useful” part
of set theory, and always easy to spot by certain formal criteria, it was nevertheless
not clear why they should be deemed less set-theoretical than the “successful” parts of
the theory. Aside from the ex post insight that they actually led into disaster, it was
not clear what a priori motivation, what consistent philosophy of the situation, would
permit one to segregate them from those parts of set theory which one wanted to save.
A closer study of the merita of the case, undertaken mainly by Russell and Weyl, and
concluded by Brouwer, showed that the way in which not only set theory but also most
of modem mathematics used the concepts of “general validity” and of “existence” was
philosophically objectionable. A system of mathematics which was free of these unde-
sirable traits, “intuitionism,” was developed by Brouwer. In this system the difficulties
and contradiction of set theory did not arise. However, a good fifty per cent of modern
mathematics, in its most vital — and up to then unquestioned — parts, especially in
analysis, were also affected by this “purge”: they either became invalid or had to be
justified by very complicated subsidiary considerations. And in this latter process one
usually lost appreciably in generality of validity and elegance of deduction. Neverthe-
less, Brouwer and Weyl considered it necessary that the concept of mathematical rigour
be revised according to these ideas.

5



It is difficult to overestimate the significance of these events. In the third decade
of the twentieth century two mathematicians-both of them of the first magnitude, and
as deeply and fully conscious of what mathematics is, or is for, or is about, as anybody
could be-actually proposed that the concept of mathematical rigour, of what constitutes
an exact proof, should be changed! The developments which followed are equally worth
noting.

1. Only very few mathematicians were willing to accept the new, exigent standards
for their own daily use. Very many, however, admitted that Weyl and Brouwer were
prima facie right, but they themselves continued to trespass, that is, to do their own
mathematics in the old, “easy” fashion-probably in the hope that somebody else, at
some other time, might find the answer to the intuitionistic critique and thereby justify
them a posteriori.

2. Hilbert came forward with the following ingenious idea to justify “classical” (i.e.,
pre-intuitionistic) mathematics: Even in the intuitionistic system it is possible to give a
rigorous account of how classical mathematics operate, that is, one can describe how
the classical system works, although one cannot justify its workings. It might therefore
be possible to demonstrate intuitionistically that classical procedures can never lead
into contradictions-into conflicts with each other. It was clear that such a proof would
be very difficult, but there were certain indications how it might be attempted. Had
this scheme worked, it would have provided a most remarkable justification of classical
mathematics on the basis of the opposing intuitionistic system itself! At least, this in-
terpretation would have been legitimate in a system of the philosophy of mathematics
which most mathematicians were willing to accept.

3. After about a decade of attempts to carry out this program, Gödel produced a
most remarkable result. This result cannot be stated absolutely precisely without several
clauses and caveats which are too technical to be formulated here. Its essential import,
however, was this: If a system of mathematics does not lead into contradiction, then this
fact cannot be demonstrated with the procedures of that system. Gödel’s proof satisfied
the strictest criterion of mathematical rigour — the intuitionistic one. Its influence on
Hilbert’s program is somewhat controversial, for reasons which again are too technical
for this occasion. My personal opinion, which is shared by many others, is, that Gödel
has shown that Hilbert’s program is essentially hopeless.

4. The main hope of a justification of classical mathematics — in the sense of Hilbert
or of Brouwer and Weyl — being gone, most mathematicians decided to use that system
anyway. After all, classical mathematics was producing results which were both elegant
and useful, and, even though one could never again be absolutely certain of its relia-
bility, it stood on at least as sound a foundation as, for example, the existence of the
electron. Hence, if one was willing to accept the sciences, one might as well accept the
classical system of mathematics. Such views turned out to be acceptable even to some
of the original protagonists of the intuitionistic system. At present the controversy about
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the “foundations” is certainly not closed, but it seems most unlikely that the classical
system should be abandoned by any but a small minority.

I have told the story of this controversy in such, detail, because I think that it con-
stitutes the best caution against taking the immovable rigour of mathematics too much
for granted. This happened in our own lifetime, and I know myself how humiliatingly
easily my own views regarding the absolute mathematical truth changed during this
episode, and how they changed three times in succession!

I hope that the above three examples illustrate one-half of my thesis sufficiently
well-that much of the best mathematical inspiration comes from experience and that it
is hardly possible to believe in the existence of an absolute, immutable concept of math-
ematical rigour, dissociated from all human experience. I am trying to take a very low-
brow attitude on this matter. Whatever philosophical or epistemological preferences
anyone may have in this respect, the mathematical fraternities’ actual experiences with
its subject give little support to the assumption of the existence of an a priori concept of
mathematical rigour. However, my thesis also has a second half, and I am going to turn
to this part now.

It is very hard for any mathematician to believe that mathematics is a purely em-
pirical science or that all mathematical ideas originate in empirical subjects. Let me
consider the second half of the statement first. There. are various important parts of
modern mathematics in which the empirical origin is untraceable, or, if traceable, so
remote that it is clear that the subject has undergone a complete metamorphosis since
it was cut off from its empirical roots. The symbolism of algebra was invented for do-
mestic, mathematical use, but it may be reasonably asserted that it had strong empirical
ties. However, modem, “abstract” algebra has more and more developed into directions
which have even fewer empirical connections. The same may be said about topology.
And in all these fields the mathematician’s subjective criterion of success, of the worth-
whileness of his effort, is very much self-contained and aesthetical and free (or nearly
free) of empirical connections. (I will say more about this further on.) In set theory
this is still clearer. The “power” and the “ordering” of an infinite set may be the gen-
eralizations of finite numerical concepts, but in their infinite form (especially “power”)
they have hardly any relation to this world. If I did not wish to avoid technicalities, I
could document this with numerous set theoretical examples-the problem of the “ax-
iom of choice,” the “comparability” of infinite “powers,” the “continuum problem,” etc.
The same remarks apply to much of real function theory and real point-set theory. Two
strange examples are given by differential geometry and by group theory: they were
certainly conceived as abstract, non-applied disciplines and almost always cultivated in
this spirit. After a decade in one case, and a century in the other, they turned out to
be very useful in physics. And they are still mostly pursued in the indicated, abstract,
non-applied spirit.
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The examples for all these conditions and their various combinations could be mul-
tiplied, but I prefer to turn instead to the first point I indicated above: Is mathematics
an empirical science? Or, more precisely: Is mathematics actually practiced in the way
in which an empirical science is practiced? Or, more generally: What is the mathemati-
cian’s normal relationship to his subject? What are his criteria of success, of desirability?
What influences, what considerations, control and direct his effort?

Let us see, then, in what respects the way in which the mathematician normally
works differs from the mode of work in the natural sciences. The difference between
these, on one hand, and mathematics, on the other, goes on, clearly increasing as one
passes from the theoretical disciplines to the experimental ones and then from the ex-
perimental disciplines to the descriptive ones. Let us therefore compare mathematics
with the category which lies closest to it — the theoretical disciplines. And let us pick
there the one which lies closest to mathematics. I hope that you will not judge me too
harshly if I fail to control the mathematical hybris and add: because it is most highly
developed among all theoretical sciences-that is, theoretical physics. Mathematics and
theoretical physics have actually a good deal in common. As I have pointed out before,
Euclid’s system of geometry was the prototype of the axiomatic presentation of clas-
sical mechanics, and similar treatments dominate phenomenological thermodynamics
as well as certain phases of Maxwell’s system of electrodynamics and also of special
relativity. Furthermore, the attitude that theoretical physics does not explain phenom-
ena, but only classifies and correlates, is today accepted by most theoretical physicists.
This means that the criterion of success for such a theory is simply whether it can, by
a simple and elegant classifying and correlating scheme, cover very many phenomena,
which without this scheme would seem complicated and heterogeneous, and whether
the scheme even covers phenomena which were not considered or even not known at
the time when the scheme was evolved. (These two latter statements express, of course,
the unifying and the predicting power of a theory.) Now this criterion, as set forth here,
is clearly to a great extent of an aesthetical nature. For this reason it is very closely akin
to the mathematical criteria of success, which, as you shall see, are almost entirely aes-
thetical. Thus we are now comparing mathematics with the empirical science that lies
closest to it and with which it has, as I hope I have shown, much in common — with
theoretical physics. The differences in the actual modus procedendi are nevertheless
great and basic. The aims of theoretical physics are in the main given from the “out-
side,” in most cases by the needs of experimental physics. They almost always originate
in the need of resolving a difficulty; the predictive and unifying achievements usually
come afterward. It we may be permitted a simile, the advances (predictions and unifica-
tions) come during the pursuit, which is necessarily preceded by a battle against some
pre-existing difficulty (usually an apparent contradiction within the existing system).
Part of the theoretical physicists’ work is a search for such obstructions, which promise
a possibility for a “break-through.” As I mentioned, these difficulties originate usually
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in experimentation, but sometimes they are contradictions between various parts of the
accepted body of theory itself. Examples are, of course, numerous.

Michelson’s experiment leading to special relativity, the difficulties of certain ioniza-
tion potentials and of certain spectroscopic structures leading to quantum mechanics
exemplify the first case; the conflict between special relativity and Newtonian gravita-
tional theory leading to general relativity exemplifies the second, rarer, case. At any
rate, the problems of theoretical physics are objectively given; and, while the criteria
which govern the exploitation of a success are, as I indicated earlier, mainly aestheti-
cal, yet the portion of the problem, and that which I called above the original “break-
through,” are hard, objective facts. Accordingly, the subject of theoretical physics was
at almost all times enormously concentrated; at almost all times most of the effort of all
theoretical physicists was concentrated on no more than one or two very sharply circum-
scribed fields-quantum theory in the 1920’s and early 1930’s and elementary particles
and structure of nuclei since the mid-1930’s are examples.

The situation in mathematics is entirely different. Mathematics falls into a great
number of subdivisions, differing from one another widely in character, style, aims, and
influence. It shows the very opposite of the extreme concentration of theoretical physics.
A good theoretical physicist may today still have a working knowledge of more than half
of his subject. I doubt that any mathematician now living has much of a relationship
to more than a quarter. “Objectively” given, “important” problems may arise after a
subdivision of mathematics has evolved relatively far and if it has bogged down seriously
before a difficulty. But even then the mathematician is essentially free to take it or leave
it and turn to something else, while an “important” problem in theoretical physics is
usually a conflict, a contradiction, which “must” be resolved. The mathematician has a
wide variety of fields to which he may turn, and he enjoys a very considerable freedom
in what he does with them. To come to the decisive point: I think that it is correct
to say that his criteria of selection, and also those of success, are mainly aesthetical.
I realize that this assertion is controversial and that it is impossible to “prove” it, or
indeed to go very far in substantiating it, without analyzing numerous specific, technical
instances. This would again require a highly technical type of discussion, for which this
is not the proper occasion. Suffice it to say that the aesthetical character is even more
prominent than in the instance I mentioned above in the case of theoretical physics.
One expects a mathematical theorem or a mathematical theory not only to describe and
to classify in a simple and elegant way numerous and a priori disparate special cases.
One also expects “elegance” in its “architectural,” structural makeup. Ease in stating
the problem, great difficulty in getting hold of it and in all attempts at approaching
it, then again some very surprising twist by which the approach, or some part of the
approach, becomes easy, etc. Also, if the deductions are lengthy or complicated, there
should be some simple general principle involved, which “explains” the complications
and detours, reduces the apparent arbitrariness to a few simple guiding motivations, etc.
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These criteria are clearly those of any creative art, and the existence of some underlying
empirical, worldly motif in the background — often in a very remote background —
overgrown by aestheticizing developments and followed into a multitude of labyrinthine
variants — all this is much more akin to the atmosphere of art pure and simple than to
that of the empirical sciences.

You will note that I have not even mentioned a comparison of mathematics with the
experimental or with the descriptive sciences. Here the differences of method and of
the general atmosphere are too obvious.

I think that it is a relatively good approximation to truth — which is much too
complicated to allow anything but approximations-that mathematical ideas originate in
empirics, although the genealogy is sometimes long and obscure. But, once they are so
conceived, the subject begins to live a peculiar life of its own and is better compared
to a creative one, governed by almost entirely aesthetical motivations, than to anything
else and, in particular, to an empirical science. There is, however, a further point which,
I believe, needs stressing. As a mathematical discipline travels far from its empirical
source, or still more, if it is a second and third generation only indirectly inspired by
ideas coming from “reality” it is beset with very grave dangers. It becomes more and
more purely aestheticizing, more and more purely l’art pour l’art. This need not be
bad, if the field is surrounded by correlated subjects, which still have closer empirical
connections, or if the discipline is under the influence of men with an exceptionally
well-developed taste. But there is a grave danger that the subject will develop along
the line of least resistance, that the stream, so far from its source, will separate into a
multitude of insignificant branches, and that the discipline will become a disorganized
mass of details and complexities. In other words, at a great distance from its empirical
source, or after much “abstract” inbreeding, a mathematical subject is in danger of
degeneration. At the inception the style is usually classical; when it shows signs of
becoming baroque, then the danger signal is up. It would be easy to give examples, to
trace specific evolutions into the baroque and the very high baroque, but this, again,
would be too technical.

In any event, whenever this stage is reached, the only remedy seems to me to be
the rejuvenating return to the source: the re-injection of more or less directly empirical
ideas. I am convinced that this was a necessary condition to conserve the freshness and
the vitality of the subject and that this will remain equally true in the future.
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