
A Subspace Decomposition Framework
for

Nonlinear Optimization:
Global Convergence and Global Rate

Luis Nunes Vicente
University of Coimbra

(Joint work with S. Gratton and Z. Zhang)

July 30, 2013 — ICCOPT, Lisbon

http//www.mat.uc.pt/~lnv

1/31

http//www.mat.uc.pt/~lnv


Outline

1 Derivative-free optimization

2 Motivation and basic idea

3 A subspace decomposition framework

4 Global convergence

5 Global rate

6 Applications to derivative-free optimization

7 Very preliminary numerical results

8 Concluding remarks

Outline 2/31



Derivative-free optimization

In this talk, to make things simple:

we consider unconstrained optimization problem

min
x∈Rn

f(x);

we suppose that

f is smooth, but the derivatives are unavailable.

Derivative-free optimization 3/31



Derivative-free optimization

In this talk, to make things simple:

we consider unconstrained optimization problem

min
x∈Rn

f(x);

we suppose that

f is smooth, but the derivatives are unavailable.

Derivative-free optimization 3/31



Derivative-free optimization

In this talk, to make things simple:

we consider unconstrained optimization problem

min
x∈Rn

f(x);

we suppose that

f is smooth, but the derivatives are unavailable.

Derivative-free optimization 3/31



Derivative-free optimization

Why derivative-free?

Derivative-free optimization 4/31



Derivative-free optimization

Why derivative-free?

Why work on derivative-free optimization? Because the problems are
important and cool.

— J. Dennis
July 24th, 2013, Toulouse

Derivative-free optimization 4/31



Existing methods

Two main classes of rigorous methods in DFO

Directional methods, like direct search

Model-based methods, like trust-region methods

Derivative-free optimization 5/31



Existing methods

Two main classes of rigorous methods in DFO

Directional methods, like direct search

Model-based methods, like trust-region methods

Derivative-free optimization 5/31



Existing methods

Two main classes of rigorous methods in DFO

Directional methods, like direct search

Model-based methods, like trust-region methods

Derivative-free optimization 5/31



Books

R. P. Brent, Algorithms for
Minimization Without Derivatives,
Prentice-Hall, Englewood Cliffs, NJ,
1973

A. R. Conn, K. Scheinberg, and L. N.
Vicente, Introduction to
Derivative-Free Optimization,
MOS-SIAM Series on Optimization,
SIAM, Philadelphia, 2009

Derivative-free optimization 6/31



Difficulty of large-scale problems

Large-scale problems?

Traditional NLP: 10, 000? 100, 000? 1, 000, 000?

Derivative-free: 100? 1000?

Large-scale derivative-free problems are very difficult:

quadratic-model-based methods:

in principle, the degree of freedom of a full quadratic model is
(n+ 1)(n+ 2)/2

in practice, we hope the algorithms finish the job with number of
function evaluations of O(n)

difficult to exploit problem structure

Motivation and basic idea 7/31



Difficulty of large-scale problems

Large-scale problems?

Traditional NLP: 10, 000? 100, 000? 1, 000, 000?

Derivative-free: 100? 1000?

Large-scale derivative-free problems are very difficult:

quadratic-model-based methods:

in principle, the degree of freedom of a full quadratic model is
(n+ 1)(n+ 2)/2

in practice, we hope the algorithms finish the job with number of
function evaluations of O(n)

difficult to exploit problem structure

Motivation and basic idea 7/31



Difficulty of large-scale problems

Large-scale problems?

Traditional NLP: 10, 000? 100, 000? 1, 000, 000?

Derivative-free: 100? 1000?

Large-scale derivative-free problems are very difficult:

quadratic-model-based methods:

in principle, the degree of freedom of a full quadratic model is
(n+ 1)(n+ 2)/2

in practice, we hope the algorithms finish the job with number of
function evaluations of O(n)

difficult to exploit problem structure

Motivation and basic idea 7/31



Difficulty of large-scale problems

Large-scale problems?

Traditional NLP: 10, 000? 100, 000? 1, 000, 000?

Derivative-free: 100? 1000?

Large-scale derivative-free problems are very difficult:

quadratic-model-based methods:

in principle, the degree of freedom of a full quadratic model is
(n+ 1)(n+ 2)/2

in practice, we hope the algorithms finish the job with number of
function evaluations of O(n)

difficult to exploit problem structure

Motivation and basic idea 7/31



Difficulty of large-scale problems

Large-scale problems?

Traditional NLP: 10, 000? 100, 000? 1, 000, 000?

Derivative-free: 100? 1000?

Large-scale derivative-free problems are very difficult:

quadratic-model-based methods:

in principle, the degree of freedom of a full quadratic model is
(n+ 1)(n+ 2)/2

in practice, we hope the algorithms finish the job with number of
function evaluations of O(n)

difficult to exploit problem structure

Motivation and basic idea 7/31



Difficulty of large-scale problems

Large-scale problems?

Traditional NLP: 10, 000? 100, 000? 1, 000, 000?

Derivative-free: 100? 1000?

Large-scale derivative-free problems are very difficult:

quadratic-model-based methods:

in principle, the degree of freedom of a full quadratic model is
(n+ 1)(n+ 2)/2

in practice, we hope the algorithms finish the job with number of
function evaluations of O(n)

difficult to exploit problem structure

Motivation and basic idea 7/31



Basic idea

Basic idea:

divide a difficult problem into a sequence of easy problems, and solve
each of them;

divide a large problem into a sequence of small problems, and solve
each of them.

Motivation and basic idea 8/31



Basic idea

Basic idea:

divide a difficult problem into a sequence of easy problems, and solve
each of them;

divide a large problem into a sequence of small problems, and solve
each of them.

Motivation and basic idea 8/31



Basic idea

Basic idea:

divide a difficult problem into a sequence of easy problems, and solve
each of them;

more specifically,

divide a large problem into a sequence of small problems, and solve
each of them.

Motivation and basic idea 8/31



An old idea, very old

Not a new idea, of course.

Motivation and basic idea 9/31



An old idea, very old

Not a new idea, of course.

Divide and conquer

Motivation and basic idea 9/31



An old idea, very old

Not a new idea, of course.

— Sun Tzu, The Art of War
(6 BCE)

Divide and conquer

Motivation and basic idea 9/31



An old idea, very old

Not a new idea, of course.

— Sun Tzu, The Art of War
(6 BCE)

Divide and conquer

Divide et impera.

— Julius Caesar
(1 BCE)

Motivation and basic idea 9/31



Subspace techniques in optimization

Gould, Nick, A. Sartenaer, and Ph L. Toint. On iterated-subspace
minimization methods for nonlinear optimization. Rutherford
Appleton Laboratory, 1994.

Yuan, Ya-xiang. Subspace techniques for nonlinear optimization.
Some topics in industrial and applied mathematics 8 (2007): 206-218.

Motivation and basic idea 10/31



Subspace decomposition techniques in optimization

Block Jacobi (linear/onlinear equations), block coordinate descent

Ferris, Michael C., and Olvi L. Mangasarian. Parallel variable
distribution. SIAM Journal on Optimization 4, no. 4 (1994):
815-832.

Fukushima, Masao. Parallel variable transformation in unconstrained
optimization. SIAM Journal on Optimization 8, no. 3 (1998):
658-672.

Boyd, Stephen, Lin Xiao, Almir Mutapcic, and Jacob Mattingley.
Notes on decomposition methods. Notes for EE364B, Stanford
University (2007).

Audet, Charles, John E. Dennis Jr, and Sébastien Le Digabel. Parallel
space decomposition of the mesh adaptive direct search algorithm.
SIAM Journal on Optimization 19, no. 3 (2008): 1150-1170.

Motivation and basic idea 11/31



A subspace decomposition framework

Suppose that the current iterate is xk.

Decomposition:

select spaces S(1)k ,S(2)k , . . . ,S(mk)
k such that

Rn =

mk∑
i=0

S(i)k ;

minimize f(xk + d) with respect to d on S(i)k , and obtain d
(i)
k

(i = 1, 2, . . . ,mk).

A subspace decomposition framework 12/31



A subspace decomposition framework

Suppose that the current iterate is xk.

Decomposition:

select spaces S(1)k ,S(2)k , . . . ,S(mk)
k such that

Rn =

mk∑
i=0

S(i)k ;

minimize f(xk + d) with respect to d on S(i)k , and obtain d
(i)
k

(i = 1, 2, . . . ,mk).

A subspace decomposition framework 12/31



A subspace decomposition framework

Suppose that the current iterate is xk.

Decomposition:

select spaces S(1)k ,S(2)k , . . . ,S(mk)
k such that

Rn =

mk∑
i=0

S(i)k ;

minimize f(xk + d) with respect to d on S(i)k , and obtain d
(i)
k

(i = 1, 2, . . . ,mk).

A subspace decomposition framework 12/31



A subspace decomposition framework

Suppose that the current iterate is xk.

Decomposition:

select spaces S(1)k ,S(2)k , . . . ,S(mk)
k such that

Rn =

mk∑
i=0

S(i)k ;

minimize f(xk + d) with respect to d on S(i)k , and obtain d
(i)
k

(i = 1, 2, . . . ,mk).

A subspace decomposition framework 12/31



A subspace decomposition framework

Suppose that the current iterate is xk.

Decomposition:

select spaces S(1)k ,S(2)k , . . . ,S(mk)
k such that

Rn =

mk∑
i=0

S(i)k ;

minimize f(xk + d) with respect to d on S(i)k , and obtain d
(i)
k

(i = 1, 2, . . . ,mk).

How to obtain a single step dk ?

Set

dk =

mk∑
i=0

d
(i)
k ?

A subspace decomposition framework 12/31



A subspace decomposition framework

Suppose that the current iterate is xk.

Decomposition:

select spaces S(1)k ,S(2)k , . . . ,S(mk)
k such that

Rn =

mk∑
i=0

S(i)k ;

minimize f(xk + d) with respect to d on S(i)k , and obtain d
(i)
k

(i = 1, 2, . . . ,mk).

How to obtain a single step dk ?

Set

dk =

mk∑
i=0

d
(i)
k ?

A subspace decomposition framework 12/31



A subspace decomposition framework

Suppose that the current iterate is xk.

Decomposition:

select spaces S(1)k ,S(2)k , . . . ,S(mk)
k such that

Rn =

mk∑
i=0

S(i)k ;

minimize f(xk + d) with respect to d on S(i)k , and obtain d
(i)
k

(i = 1, 2, . . . ,mk).

Composition (Fukushima, 1998)

set
Sk = span

{
d
(1)
k , d

(2)
k , . . . , d

(mk)
k

}
;

minimize f(xk + d) with respect to d on Sk, and obtain dk.

A subspace decomposition framework 12/31



A subspace decomposition framework

Suppose that the current iterate is xk.

Decomposition:

select spaces S(1)k ,S(2)k , . . . ,S(mk)
k such that

Rn =

mk∑
i=0

S(i)k ;

minimize f(xk + d) with respect to d on S(i)k , and obtain d
(i)
k

(i = 1, 2, . . . ,mk).

Composition (Fukushima, 1998)

set
Sk = span

{
d
(1)
k , d

(2)
k , . . . , d

(mk)
k

}
;

minimize f(xk + d) with respect to d on Sk, and obtain dk.

A subspace decomposition framework 12/31



A subspace decomposition framework

Suppose that the current iterate is xk.

Decomposition:

select spaces S(1)k ,S(2)k , . . . ,S(mk)
k such that

Rn =

mk∑
i=0

S(i)k ;

minimize f(xk + d) with respect to d on S(i)k , and obtain d
(i)
k

(i = 1, 2, . . . ,mk).

Composition (Fukushima, 1998)

set
Sk = span

{
d
(1)
k , d

(2)
k , . . . , d

(mk)
k

}
;

minimize f(xk + d) with respect to d on Sk, and obtain dk.

A subspace decomposition framework 12/31



Localization

Trust-region:

min f(xk + d)

s.t. d ∈ S(i)k

‖d‖ ≤ ∆k

Levenberg-Marquardt:

min
d∈S(i)k

f(xk + d) +
1

2
σk‖d‖2

How to update ∆k or σk?

A subspace decomposition framework 13/31



Localization

Trust-region:

min f(xk + d)

s.t. d ∈ S(i)k

‖d‖ ≤ ∆k

Levenberg-Marquardt:

min
d∈S(i)k

f(xk + d) +
1

2
σk‖d‖2

How to update ∆k or σk?

A subspace decomposition framework 13/31



Localization

Trust-region:

min f(xk + d)

s.t. d ∈ S(i)k

‖d‖ ≤ ∆k

Levenberg-Marquardt:

min
d∈S(i)k

f(xk + d) +
1

2
σk‖d‖2

How to update ∆k or σk?

A subspace decomposition framework 13/31



Localization

Trust-region:

min f(xk + d)

s.t. d ∈ S(i)k

‖d‖ ≤ ∆k

Levenberg-Marquardt:

min
d∈S(i)k

f(xk + d) +
1

2
σk‖d‖2

How to update ∆k or σk?

A subspace decomposition framework 13/31



Localization

Trust-region:

min f(xk + d)

s.t. d ∈ S(i)k

‖d‖ ≤ ∆k

Levenberg-Marquardt:

min
d∈S(i)k

f(xk + d) +
1

2
σk‖d‖2

How to update ∆k or σk?

ρk =
f(xk)− f(xk + dk)∑mk

i=1

[
f(xk)− f(xk + d

(i)
k )
]

A subspace decomposition framework 13/31



Localization

Trust-region:

min f(xk + d)

s.t. d ∈ S(i)k

‖d‖ ≤ ∆k

Levenberg-Marquardt:

min
d∈S(i)k

f(xk + d) +
1

2
σk‖d‖2

How to update ∆k or σk?

ρk =
f(xk)− f(xk + dk)∑mk

i=1

[
f(xk)− f(xk + d

(i)
k )
]

A subspace decomposition framework 14/31



Trust-region framework

Algorithm (Trust-region framework)

Step 1. Select a constant η ∈ [0, 1), pick a starting point x0 ∈ Rn, choose
∆0 > 0, and set k = 0.

Step 2. Choose subspaces S(i)k (i = 1, 2, · · · ,mk) of Rn so that

mk∑
i=1

S(i)k = Rn.

Step 3. For i = 1, 2, . . . ,mk, solve

min f(xk + d)

s.t. d ∈ S(i)k

‖d‖ ≤ ∆k,

to get d
(i)
k .

A subspace decomposition framework 15/31



Trust-region framework

Algorithm (Trust-region framework)

Step 1. Select a constant η ∈ [0, 1), pick a starting point x0 ∈ Rn, choose
∆0 > 0, and set k = 0.

Step 2. Choose subspaces S(i)k (i = 1, 2, · · · ,mk) of Rn so that

mk∑
i=1

S(i)k = Rn.

Step 3. For i = 1, 2, . . . ,mk, solve

min f(xk + d)

s.t. d ∈ S(i)k

‖d‖ ≤ ∆k,

to get d
(i)
k .

A subspace decomposition framework 15/31



Trust-region framework

Algorithm (Trust-region framework)

Step 1. Select a constant η ∈ [0, 1), pick a starting point x0 ∈ Rn, choose
∆0 > 0, and set k = 0.

Step 2. Choose subspaces S(i)k (i = 1, 2, · · · ,mk) of Rn so that

mk∑
i=1

S(i)k = Rn.

Step 3. For i = 1, 2, . . . ,mk, solve

min f(xk + d)

s.t. d ∈ S(i)k

‖d‖ ≤ ∆k,

to get d
(i)
k .

A subspace decomposition framework 15/31



Trust-region framework

Algorithm (Trust-region framework)

Step 1. Select a constant η ∈ [0, 1), pick a starting point x0 ∈ Rn, choose
∆0 > 0, and set k = 0.

Step 2. Choose subspaces S(i)k (i = 1, 2, · · · ,mk) of Rn so that

mk∑
i=1

S(i)k = Rn.

Step 3. For i = 1, 2, . . . ,mk, solve

min f(xk + d)

s.t. d ∈ S(i)k

‖d‖ ≤ ∆k,

to get d
(i)
k .

A subspace decomposition framework 15/31



Trust-region framework

Algorithm (Trust-region framework cont.)

Step 4. Obtain dk by solving

min f(xk + d)

s.t. d =

mk∑
i=1

t(i)d
(i)
k

0 ≤ t(i) ≤ 1, i = 1, 2, · · · ,mk.

Step 5. Let

ρk =
f(xk)− f(xk + dk)∑mk

i=1

[
f(xk)− f(xk + d

(i)
k )
] ,

and set ∆k+1 so that

∆k+1 ≥ ∆k whenever ρk > η.

Step 6. Let xk+1 = xk + dk, increment k by 1, and go to Step 2.

A subspace decomposition framework 16/31



Trust-region framework

Algorithm (Trust-region framework cont.)

Step 4. Obtain dk by solving

min f(xk + d)

s.t. d =

mk∑
i=1

t(i)d
(i)
k

0 ≤ t(i) ≤ 1, i = 1, 2, · · · ,mk.

Step 5. Let

ρk =
f(xk)− f(xk + dk)∑mk

i=1

[
f(xk)− f(xk + d

(i)
k )
] ,

and set ∆k+1 so that

∆k+1 ≥ ∆k whenever ρk > η.

Step 6. Let xk+1 = xk + dk, increment k by 1, and go to Step 2.

A subspace decomposition framework 16/31



Trust-region framework

Algorithm (Trust-region framework cont.)

Step 4. Obtain dk by solving

min f(xk + d)

s.t. d =

mk∑
i=1

t(i)d
(i)
k

0 ≤ t(i) ≤ 1, i = 1, 2, · · · ,mk.

Step 5. Let

ρk =
f(xk)− f(xk + dk)∑mk

i=1

[
f(xk)− f(xk + d

(i)
k )
] ,

and set ∆k+1 so that

∆k+1 ≥ ∆k whenever ρk > η.

Step 6. Let xk+1 = xk + dk, increment k by 1, and go to Step 2.

A subspace decomposition framework 16/31



Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework)

Step 1. Select a constant η ∈ [0, 1), pick a starting point x0 ∈ Rn, choose a
positive number σ0, and set k = 0.

Step 2. Choose nonzero subspaces S(i)k (i = 1, 2, · · · ,mk) of Rn so that

mk∑
i=1

S(i)k = Rn.

Step 3. For i = 1, 2, . . . ,mk, solve

min
d∈S(i)

k

f(xk + d) +
1

2
σk‖d‖2

to get d
(i)
k .

A subspace decomposition framework 17/31



Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework)

Step 1. Select a constant η ∈ [0, 1), pick a starting point x0 ∈ Rn, choose a
positive number σ0, and set k = 0.

Step 2. Choose nonzero subspaces S(i)k (i = 1, 2, · · · ,mk) of Rn so that

mk∑
i=1

S(i)k = Rn.

Step 3. For i = 1, 2, . . . ,mk, solve

min
d∈S(i)

k

f(xk + d) +
1

2
σk‖d‖2

to get d
(i)
k .

A subspace decomposition framework 17/31



Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework)

Step 1. Select a constant η ∈ [0, 1), pick a starting point x0 ∈ Rn, choose a
positive number σ0, and set k = 0.

Step 2. Choose nonzero subspaces S(i)k (i = 1, 2, · · · ,mk) of Rn so that

mk∑
i=1

S(i)k = Rn.

Step 3. For i = 1, 2, . . . ,mk, solve

min
d∈S(i)

k

f(xk + d) +
1

2
σk‖d‖2

to get d
(i)
k .

A subspace decomposition framework 17/31



Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework)

Step 1. Select a constant η ∈ [0, 1), pick a starting point x0 ∈ Rn, choose a
positive number σ0, and set k = 0.

Step 2. Choose nonzero subspaces S(i)k (i = 1, 2, · · · ,mk) of Rn so that

mk∑
i=1

S(i)k = Rn.

Step 3. For i = 1, 2, . . . ,mk, solve

min
d∈S(i)

k

f(xk + d) +
1

2
σk‖d‖2

to get d
(i)
k .

A subspace decomposition framework 17/31



Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework cont.)

Step 4. Solve

min
t∈Rmk

f(xk +Dkt) +
1

2
σk‖t‖2,

to obtain tk, and then set

dk = Dktk,

where Dk = (d
(1)
k d

(2)
k · · · d(mk)

k ).

Step 5. Let

ρk =
f(xk)− f(xk + dk)∑mk

i=1

[
f(xk)− f(xk + d

(i)
k )
] ,

and set σk+1 so that

σk+1 ≤ σk whenever ρk > η.

Step 6. Let xk+1 = xk + dk, increment k by 1, and go to Step 2.

A subspace decomposition framework 18/31



Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework cont.)

Step 4. Solve

min
t∈Rmk

f(xk +Dkt) +
1

2
σk‖t‖2,

to obtain tk, and then set

dk = Dktk,

where Dk = (d
(1)
k d

(2)
k · · · d(mk)

k ).

Step 5. Let

ρk =
f(xk)− f(xk + dk)∑mk

i=1

[
f(xk)− f(xk + d

(i)
k )
] ,

and set σk+1 so that

σk+1 ≤ σk whenever ρk > η.

Step 6. Let xk+1 = xk + dk, increment k by 1, and go to Step 2.

A subspace decomposition framework 18/31



Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework cont.)

Step 4. Solve

min
t∈Rmk

f(xk +Dkt) +
1

2
σk‖t‖2,

to obtain tk, and then set

dk = Dktk,

where Dk = (d
(1)
k d

(2)
k · · · d(mk)

k ).

Step 5. Let

ρk =
f(xk)− f(xk + dk)∑mk

i=1

[
f(xk)− f(xk + d

(i)
k )
] ,

and set σk+1 so that

σk+1 ≤ σk whenever ρk > η.

Step 6. Let xk+1 = xk + dk, increment k by 1, and go to Step 2.

A subspace decomposition framework 18/31



Assumptions

Assumption

1 The function f is bounded from below and twice continuously
differentiable, and ∇2f is bounded on Rn.

2 The sequence {mk} is bounded.

3 The smallest eigenvalues of
∑mk

i=1 P
(i)
k are bounded away from zero,

where P
(i)
k is the orthogonal projection matrix from Rn onto S(i)k .

Global convergence 19/31



Assumptions

Assumption

1 The function f is bounded from below and twice continuously
differentiable, and ∇2f is bounded on Rn.

2 The sequence {mk} is bounded.

3 The smallest eigenvalues of
∑mk

i=1 P
(i)
k are bounded away from zero,

where P
(i)
k is the orthogonal projection matrix from Rn onto S(i)k .

Global convergence 19/31



Assumptions

Assumption

1 The function f is bounded from below and twice continuously
differentiable, and ∇2f is bounded on Rn.

2 The sequence {mk} is bounded.

3 The smallest eigenvalues of
∑mk

i=1 P
(i)
k are bounded away from zero,

where P
(i)
k is the orthogonal projection matrix from Rn onto S(i)k .

Global convergence 19/31



Assumptions

Assumption

1 The function f is bounded from below and twice continuously
differentiable, and ∇2f is bounded on Rn.

2 The sequence {mk} is bounded.

3 The smallest eigenvalues of
∑mk

i=1 P
(i)
k are bounded away from zero,

where P
(i)
k is the orthogonal projection matrix from Rn onto S(i)k .

Global convergence 19/31



Global convergence

Theorem

Suppose that the assumptions stated before hold, then the iterates {xk}
generated by either of the frameworks satisfy

lim
k→∞

‖∇f(xk)‖ = 0.

Global convergence 20/31



Global rate

Theorem

Suppose that the assumptions stated before hold, and additionally

∆k+1 ≥ α∆k

for some constant α ∈ (0, 1], then the iterates {xk} generated by the
trust-region framework satisfy

min
0≤`≤k

‖∇f(x`)‖ ≤ C1

√
m

k
,

where m is an upper bound of {mk}.

Global rate 21/31



Global rate

Theorem

Suppose that the assumptions stated before hold, and additionally

σk+1 ≤ βσk

for some constant β ≥ 1, then the iterates {xk} generated by the
Levenberg-Marquardt framework satisfy

min
0≤`≤k

‖∇f(x`)‖ ≤ C2

√
m

k
,

where m is an upper bound of {mk}.

Global rate 22/31



Number of subspaces and subproblem solution precision

We have thus the worst case complexity: O(ε−2m)

Using this and the WCC O(n2ε−2) for subproblems,

a reasonable choice for m is O(
√
n)

a reasonable subproblem solution accuracy is O(n−
1
4 )

Global rate 23/31



Number of subspaces and subproblem solution precision

We have thus the worst case complexity: O(ε−2m)

Using this and the WCC O(n2ε−2) for subproblems,

a reasonable choice for m is O(
√
n)

a reasonable subproblem solution accuracy is O(n−
1
4 )

Global rate 23/31



Applications to derivative-free optimization

Properties of the framework

It does not explicitly require derivatives.

It is naturally parallel.

It is naturally multilevel.

Applications to derivative-free optimization 24/31



Applications to derivative-free optimization

Properties of the framework

It does not explicitly require derivatives.

It is naturally parallel.

It is naturally multilevel.

Applications to derivative-free optimization 24/31



Applications to derivative-free optimization

Properties of the framework

It does not explicitly require derivatives.

It is naturally parallel.

It is naturally multilevel.

Applications to derivative-free optimization 24/31



Applications to derivative-free optimization

Properties of the framework

It does not explicitly require derivatives.

It is naturally parallel.

It is naturally multilevel.

Applications to derivative-free optimization 24/31



Applications to derivative-free optimization

Properties of the framework

It does not explicitly require derivatives.

It is naturally parallel.

It is naturally multilevel.

⇓

Our goal

Parallel and multilevel algorithms without using derivatives and capable of
solving relatively large problems.

Applications to derivative-free optimization 24/31



Very preliminary numerical results

Use the Levenberg-Marquardt framework

Subproblem solver: NEWUOA

Number of subspaces:
√
n/2

Benchmark: NEWUOA (NPT=2N+1; RHOEND=1.0E-6)

Very preliminary: not parallel, not multilevel, not large-scale . . .

Dimension of test problems: 25, 30, 35, 40

Denote our code as SSD

Very preliminary numerical results 25/31



VARDIM

Table : Numerical results of VARDIM

n 25 30 35 40

#f
8343 8926 12689 17741 NEWUOA

3592 6222 7507 16653 SSD

ffinal
1.61E-11 4.08E-11 4.93E-11 1.76E-10 NEWUOA

9.74E-11 6.85E-10 5.74E-11 7.89E-13 SSD

f(x) =
n∑

i=1

(xi − 1)2 +
[ n∑

i=1

i(xi − 1)
]2

+
[ n∑

i=1

i(xi − 1)
]4

Very preliminary numerical results 26/31



PENALTY1

Table : Numerical results of PENALTY1

n 25 30 35 40

#f
9532 10947 14427 13577 NEWUOA

2089 2784 2348 2812 SSD

ffinal
2.03E-04 2.48E-04 2.93E-04 3.39E-04 NEWUOA

2.04E-04 2.50E-04 2.95E-04 3.41E-04 SSD

f(x) = 10−15
n∑

i=1

(xi − 1)2 +
(1

4
−

n∑
i=1

x2i

)2

Very preliminary numerical results 27/31



SBRYBND

Table : Numerical results of SBRYBND

n 25 30 35 40

#f
968 576 2052 2363 NEWUOA

27889 53103 90304 206608 SSD

ffinal

235 326 342 395 NEWUOA

3.08 3.08 3.08 3.08 SSD

134 284 233 229

f(x) =

n∑
i=1

[
(2 + 5p2ix

2
i )pixi + 1−

∑
j∈Ji

pjxj(1 + pjxj)
]
,

where Ji = {j | j 6= i,max{1, i− 5} ≤ j ≤ min{n, j + 1}}

Very preliminary numerical results 28/31



CHROSEN

Table : Numerical results of CHROSEN

n 25 30 35 40

#f
1123 1445 1717 1859 NEWUOA

96040 103296 127726 142272 SSD

ffinal
8.94E-12 1.07E-11 1.13E-11 3.14E-11 NEWUOA

2.95E-10 5.49E-10 7.26E-10 8.09E-10 SSD

f(x) =

n−1∑
i=1

[
4(xi − x2i+1)

2 + (1− xi+1)
2
]

Very preliminary numerical results 29/31



Concluding remarks

A subspace decomposition framework (two versions) with global
convergence and convergence rate

Possible to develop parallel and multilevel methods without using
derivatives

“Clever” way of choosing subspaces . . .

not try to cover the whole space, but . . .

choose subspaces randomly

Concluding remarks 30/31



Concluding remarks

A subspace decomposition framework (two versions) with global
convergence and convergence rate

Possible to develop parallel and multilevel methods without using
derivatives

“Clever” way of choosing subspaces . . .

not try to cover the whole space, but . . .

choose subspaces randomly

Concluding remarks 30/31



Concluding remarks

A subspace decomposition framework (two versions) with global
convergence and convergence rate

Possible to develop parallel and multilevel methods without using
derivatives

“Clever” way of choosing subspaces . . .

not try to cover the whole space, but . . .

choose subspaces randomly

Concluding remarks 30/31



Concluding remarks

A subspace decomposition framework (two versions) with global
convergence and convergence rate

Possible to develop parallel and multilevel methods without using
derivatives

“Clever” way of choosing subspaces . . .

not try to cover the whole space, but . . .

choose subspaces randomly

Concluding remarks 30/31



Thanks!

Thanks!
lnv@mat.uc.pt

Thanks 31/31

lnv@mat.uc.pt

	Derivative-free optimization
	Motivation and basic idea
	A subspace decomposition framework
	Global convergence
	Global rate
	Applications to derivative-free optimization
	Very preliminary numerical results
	Concluding remarks

