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Derivative-free optimization

In this talk, to make things simple:

@ we consider unconstrained optimization problem

min f(z);
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Derivative-free optimization

In this talk, to make things simple:

@ we consider unconstrained optimization problem

min f(z);

@ we suppose that

o f is smooth, but the derivatives are unavailable.
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Derivative-free optimization

o Why derivative-free?
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Derivative-free optimization

o Why derivative-free?

Why work on derivative-free optimization? Because the problems are
important and cool.

— J. Dennis
July 24th, 2013, Toulouse
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@ Two main classes of rigorous methods in DFO
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Existing methods

@ Two main classes of rigorous methods in DFO

o Directional methods, like direct search

o Model-based methods, like trust-region methods
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Algorithms for
Minimization
Without

Derivatives
Richard P. Brent

A. R. Conn, K. Scheinberg, and L. N.

R. P. Brent, Algorithms for Vicente, Introduction to
Minimization Without Derivatives, Derivative-Free Optimization,
Prentice-Hall, Englewood Cliffs, NJ, MOS-SIAM Series on Optimization,
1973 SIAM, Philadelphia, 2009
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Difficulty of large-scale problems

o Large-scale problems?
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Difficulty of large-scale problems

@ Large-scale problems?
e Traditional NLP: 10,0007 100,0007 1,000,0007?
o Derivative-free: 1007 10007
o Large-scale derivative-free problems are very difficult:

e quadratic-model-based methods:

@ in principle, the degree of freedom of a full quadratic model is
(n+1)(n+2)/2

@ in practice, we hope the algorithms finish the job with number of
function evaluations of O(n)

o difficult to exploit problem structure

Motivation and basic idea 7/31



o Basic idea:
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o Basic idea:

o divide a difficult problem into a sequence of easy problems, and solve
each of them;
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o Basic idea:

o divide a difficult problem into a sequence of easy problems, and solve
each of them;

more specifically,

o divide a large problem into a sequence of small problems, and solve
each of them.
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An old idea, very old

@ Not a new idea, of course.
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An old idea, very old

@ Not a new idea, of course.

SwEZ Divide and conquer

MRAEZ A, THEZ, ANKZ, BH5z Divide et impera.
JLig o B, HARL — Julius Caesar
— Sun Tzu, The Art of War (1 BCE)

(6 BCE)



Subspace techniques in optimization

@ Gould, Nick, A. Sartenaer, and Ph L. Toint. On iterated-subspace
minimization methods for nonlinear optimization. Rutherford
Appleton Laboratory, 1994.

@ Yuan, Ya-xiang. Subspace techniques for nonlinear optimization.
Some topics in industrial and applied mathematics 8 (2007): 206-218.
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Subspace decomposition techniques in optimization

@ Block Jacobi (linear/onlinear equations), block coordinate descent

o Ferris, Michael C., and Olvi L. Mangasarian. Parallel variable
distribution. SIAM Journal on Optimization 4, no. 4 (1994):
815-832.

@ Fukushima, Masao. Parallel variable transformation in unconstrained
optimization. SIAM Journal on Optimization 8, no. 3 (1998):
658-672.

o Boyd, Stephen, Lin Xiao, Almir Mutapcic, and Jacob Mattingley.
Notes on decomposition methods. Notes for EE364B, Stanford
University (2007).

o Audet, Charles, John E. Dennis Jr, and Sébastien Le Digabel. Parallel

space decomposition of the mesh adaptive direct search algorithm.
SIAM Journal on Optimization 19, no. 3 (2008): 1150-1170.
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A subspace decomposition framework

@ Suppose that the current iterate is x.
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A subspace decomposition framework

@ Suppose that the current iterate is x.

@ Decomposition:

o select spaces S,(cl),S,?), . ,S,Sm’“) such that

R" = %S,(:);

=0

e minimize f(xy + d) with respect to d on S,Ef), and obtain dgf)
(i=1,2,...,mp).

@ How to obtain a single step di ?
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A subspace decomposition framework

@ Suppose that the current iterate is x.

@ Decomposition:

o select spaces S,(cl),S,?), . ,S,Sm’“) such that
my .
R =35
=0
e minimize f(xy + d) with respect to d on S,Ef), and obtain dgf)
(i=1,2,...,mp).

@ How to obtain a single step di ?

o Set m
de =Y dy)?
=0
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A subspace decomposition framework

@ Suppose that the current iterate is x.

@ Decomposition:

o select spaces S,(cl),S,?), . ,S,Em’“) such that
mpg .
R =38
i=0

e minimize f(xy + d) with respect to d on S and obtain dg)
(i=1,2,...,mp).

e Composition (Fukushima, 1998)

e set
S), = span {d}cl), d,(f)7 .. ,dimk)} ;

o minimize f(zj + d) with respect to d on Sj, and obtain dy.
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Localization
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st.dec 5,5”
1]l < Ay,

o Levenberg-Marquardt:

min_ f(x +d) + Uk”dH2
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Localization

o Trust-region:

min f(z + d)
st.de 5,5”
1]l < Ay,

o Levenberg-Marquardt:

1
min f(zy + d) + 50k d|?
des) 2

@ How to update Ay or 07

f(xg) = fl@g + dy) |
ST [F@n) = o+ )]
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Trust-region framework

Algorithm (Trust-region framework)

v
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Trust-region framework

Algorithm (Trust-region framework)

Step 1. Select a constant 1) € [0,1), pick a starting point 2y € R™, choose
Ag >0, and set &k = 0.

v
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Trust-region framework

Algorithm (Trust-region framework)

Step 1. Select a constant 1) € [0,1), pick a starting point 2y € R™, choose
Ag >0, and set &k = 0.
Step 2. Choose subspaces S,ii) (i=1,2,---,my) of R so that

mg

> s =R"

i=1
Step 3. Fori=1,2,...,my, solve
min f(zg + d)

st.de S
Id]l < Ay,

to get dgf) .

v
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Trust-region framework

Algorithm (Trust-region framework cont.)

Step 4. Obtain dy by solving
min f(zg + d)
mg )
st.d=Y ¢4
i=1

0<t® <1, i=1,2-,m.

v
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Trust-region framework

Algorithm (Trust-region framework cont.)

Step 4. Obtain dy by solving

min f(zg + d)
mg .
st.d=Y ¢4
=1
0<t® <1, i=1,2-,m.

Step 5. Let
f(xr) — flog + di)

S [fn) = flan+ )]

Pk =

and set Agy; so that

Agy1 > Ap whenever pp > 1.

v
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Algorithm (Trust-region framework cont.)

Step 4. Obtain dy by solving

min f(zg + d)
mg .
st.d=Y ¢4
=1
0<t® <1, i=1,2-,m.

Step 5. Let
f(xr) — flog + di)

S [fn) = flan+ )]

Pk =

and set Agy; so that

Agy1 > Ap whenever pp > 1.

Step 6. Let xp 11 = xf + d, increment k by 1, and go to Step 2.

v
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Algorithm (Levenberg-Marquardt framework)
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Step 1. Select a constant 1 € [0,1), pick a starting point 2y € R™, choose a
positive number o, and set k = 0.
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Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework)

Step 1. Select a constant 1 € [0,1), pick a starting point 2y € R™, choose a
positive number o, and set k = 0.

Step 2. Choose nonzero subspaces S,ii) (i=1,2,---,my) of R so that

%55) =R".
=1

Step 3. Fori=1,2,...,my, solve

1
min f(zx +d) + Sop||d|®
desy) 2

to get d,(:) .
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Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework cont.)

Step 4. Solve

D
min f(zy + Dit) + Uk||75||

to obtain tj, and then set
dy, = Dyty,

where Dy, = (d,(cl) d,(f) d,(cm’“)).

v
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Step 4. Solve

D
min f(zy + Dit) + Uk||75||

to obtain tj, and then set
dy, = Dyty,

where Dy, = (d,(cl) d,(f) d,(fm’“)).

Step 5. Let
f(xr) — fog + di)

Pr =
© [£@e) - fow+d)]

and set o1 so that

Ok+1 < 0 whenever pi > 1.
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Levenberg-Marquardt framework

Algorithm (Levenberg-Marquardt framework cont.)

Step 4. Solve

D
min f(zy + Dit) + Uk||75||

to obtain tj, and then set
dy, = Dyty,

where Dy, = (dV d® ... g™y,

Step 5. Let
f(xr) — fog + di)

© [£@e) - fow+d)]

Pk =

and set o1 so that

ok+1 < o whenever pi > 1.

Step 6. Let z;11 = xk + di, increment k by 1, and go to Step 2.

v
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Q@ The function f is bounded from below and twice continuously
differentiable, and V2 f is bounded on R™.
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Assumptions

Q@ The function f is bounded from below and twice continuously
differentiable, and V2 f is bounded on R™.

@ The sequence {my} is bounded.

© The smallest eigenvalues of Y "% P,gi) are bounded away from zero,

where P,gi) is the orthogonal projection matrix from R™ onto S,gi).
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Global convergence

Suppose that the assumptions stated before hold, then the iterates {xy}
generated by either of the frameworks satisfy

lim ||V (z) | = 0.
k—o0

Global convergence 20



Global rate

Theorem
Suppose that the assumptions stated before hold, and additionally

Apy1 > alg

for some constant « € (0, 1], then the iterates {xy} generated by the
trust-region framework satisfy

m
. - m
Or%ﬂggk\\vf(we)ll <Cn/ 4

where m is an upper bound of {my}.
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Global rate

Theorem
Suppose that the assumptions stated before hold, and additionally

Okt+1 < Boy,

for some constant 3 > 1, then the iterates {x\} generated by the
Levenberg-Marquardt framework satisfy

m
. - m
Or%ﬂggk\\vf(we)ll <G/ %

where m is an upper bound of {my}.
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Number of subspaces and subproblem solution precision

We have thus the worst case complexity: O(e~2m)
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Number of subspaces and subproblem solution precision

We have thus the worst case complexity: O(e~2m)

Using this and the WCC O(n2c=2) for subproblems,

@ a reasonable choice for m is O(y/n)

. . _1
@ a reasonable subproblem solution accuracy is O(n™ 1)
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Applications to derivative-free optimization

Properties of the framework

o It does not explicitly require derivatives.
o [t is naturally parallel.

o It is naturally multilevel.

Our goal

Parallel and multilevel algorithms without using derivatives and capable of
solving relatively large problems.

Applications to derivative-free optimization



Very preliminary numerical results

@ Use the Levenberg-Marquardt framework

Subproblem solver: NEWUOA

o Number of subspaces: /n/2

Benchmark: NEWUOA (NPT=2N+1; RHOEND=1.0E-6)

Very preliminary: not parallel, not multilevel, not large-scale ...
@ Dimension of test problems: 25, 30, 35, 40

Denote our code as SSD
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VARDIM

Table : Numerical results of VARDIM

n | 25 30 35 40
8343 8926 12689 17741 | NEWUOA
71| 3502 6222 7507 16653 | ssp
161E-11 4.08E-11 4.93E-11 1.76E-10 | NEWUQA
Jinal | 0 74E.11 6.85E.10 5.74E.11 7.80E-13 | SSD
@)= (@i =12+ [ D = 1]+ [ D itw — 1)
i=1 =1 i=1
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PENALTY1

Table : Numerical results of PENALTY1

n| 25 30 35 40
Ly | 9522 10047 14427 13577 | NEWUOA
2089 2784 2348 2812 SSD
;. | 203E04 243804 203604 33904 [ wmivOA
final | 5 04E-04 2.50E-04 2.95E-04 3.41E-04 | SSD
n n
—15 2 2 2
fl@) =107 (@ — 1) +<Z—sz)
=1 i=1
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SBRYBND

Table : Numerical results of SBRYBND

n |25 30 35 40
968 576 2052 2363 | NEWUDA
#1 27889 53103 90304 206608 | SSD
235 326 342 395 NEWUOA
feinal | 3.08  3.08 3.08 3.08 SSD
134 284 233 229

n

f@) =" (@4 sptadpiz: + 1= > pys (14 pyzy)]

=1 J€J;

where J; = {j | j # i,max{l,i — 5} < j <min{n,j+ 1}}
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Table : Numerical results of CHROSEN

n |25 30 35 40
1123 1445 1717 1859 NEWUOA
#1 96040 103296 127726 142272 SSD
8.94E-12 1.07E-11 1.13E-11 3.14E-11 | NEWUOA
2.95E-10 5.49E-10 7.26E-10 8.09E-10 | SSD

ffinal

n—1

F@) =Y |4 - ) + (0= wi)’]

i=1

Very preliminary numerical results 29/31



Concluding remarks

@ A subspace decomposition framework (two versions) with global
convergence and convergence rate

@ Possible to develop parallel and multilevel methods without using
derivatives
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Concluding remarks

@ A subspace decomposition framework (two versions) with global
convergence and convergence rate

@ Possible to develop parallel and multilevel methods without using
derivatives

o “Clever” way of choosing subspaces ...

@ not try to cover the whole space, but ...

o choose subspaces randomly
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Thanks!
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