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Unconstrained derivative-free optimization (DFO)

min f(z)

z€R™
f:R" SR

f is bounded from below and differentiable
V f is Lipschitz continuous but unavailable

@ Many real-world problems: derivatives are expensive or unreliable.

@ S. Gratton, P. Laloyaux, and A. Sartenaer, “Derivative-free Optimization for
Large-scale Nonlinear Data Assimilation Problems”, 2013.
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Derivative-free optimization: What is desirable?

Algorithms that
@ do not use derivatives, and
@ use function evaluations as few as possible.

And convergence theory of the algorithms.
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Existing methods

@ Two main classes of rigorous methods in DFO
o Directional methods, like direct search (GPS, GSS, MADS ...)

o Model-based methods, like trust region methods (DFO, NEWUOA,
CONDER, BOOSTER, ORBIT ...)
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More ...

A forcing function p is a positive and monotonically nondecreasing
function such that

im 2% —
al0 «
In this talk:
2
a
pla) = 9
ag =1 (initial stepsize)
v =2 (increasing factor)
1
0 = B (decreasing factor)
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Traditional polling set: PSS

e Positive spanning set (PSS):
D ={dy,...,dny} is a PSS if it spans R" positively:

m
R’”:{Zmdizmzo(lgigm)}.

=1

Example:
=V f(zr)

Dg ={e1,...,en,—€1,...,—€n}

o 3d € D that ‘approximates’ —V f(x), meaning d' [~V f(x;)] > 0.
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The quality of a PSS: Cosine measure

@ Cosine measure: the ability of D to ‘approximate’ directions in R".

d"v

D) = ' Tl
em(D) = min max o

@ Cosine of the largest angle ‘between D and the vectors in R™'.
@ For each v € R", there exists d € D such that
d'v > cn(D)|d|[]v],
especially when v = =V f(xy).
o Example: .
cm(Dg) = T
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DS with PSS: Theory

Let {Dy} be a sequence of PSSs such that cm(Dy) > k > 0 for each k.

Global converence:

Theorem (Torczon 1997, Kolda, Lewis, and Torczon 2003)
o liminfy oo ||V f(xg)|| = 0.

Global rate and worst case complexity (WCC):

Global rate and worst case complexity (Vicente 2013)
o ming<e<k |V f(ze)ll = O(1/VE).

o ||V f(xy)| is driven under e within O(e~?) iterations.

Question: Does the theory cover the most efficient implementation of DS?



A competitor against PSS: Random polling set

@ Success of random coordinate descent, stochastic gradient ...

o Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale
optimization problems”, SIAM Journal on Optimization, 22(2),
341-362, 2012

o P. Richtdrik, M. Takag, “lteration complexity of randomized
block-coordinate descent methods for minimizing a composite
function.” Mathematical Programming 144(1-2): 1-38, 2014

e Z. Lu, and L. Xiao. "On the complexity analysis of randomized
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@ Success of random coordinate descent, stochastic gradient ...

o Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale
optimization problems”, SIAM Journal on Optimization, 22(2),
341-362, 2012

o P. Richtdrik, M. Takag, “lteration complexity of randomized
block-coordinate descent methods for minimizing a composite
function.” Mathematical Programming 144(1-2): 1-38, 2014

e Z. Lu, and L. Xiao. "On the complexity analysis of randomized
block-coordinate descent methods”, no. MSR-TR-2013-53, May 2013

@ Sucess of randomization in derivative-free methods, with insightful
theories:

o A.S. Bandeira, K. Scheinberg, and L. N. Vicente, “"Convergence of
trust-region methods based on probabilistic models”, submitted

o K. Scheinberg, “Convergence rates of line-search and trust region
methods based on probabilistic models”, MS16, SIOPT14
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Using random polling sets: What will happen?

=V f(zk)

n + 1 random polling directions —Vf(xx)

in this case not a PSS

< n random polling directions

certainly not a PSS ...

Dy, is ‘good’ in some probabilistic sense ...
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What do we mean by ‘good’?

If derivatives were available, it would have been sufficient to require

—d V(o)
AT J

Define the cosine measure of D given v by

d"v

cm(D,v) = max ———.
deD |[|d|[[v]

Then cm(D, —V f(x)) > x would have been enough.

But derivatives are not available!
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Random variables v.s. realizations

From now on, we suppose that the polling directions are not defined
deterministically but taken at random from the unit sphere S"~ .

Distinguish random variables from realizations

Iterate Polling set
Random variables Xy D
Realizations Tk Dy,
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What is desirable?

o Global convergence:

P (liminf IV F(X0)] = 0) — 17
k—o0

o Global rate:

P ( min ||V £(X,)] < %) is “high’

0<e<k

for some properly selected constant C?

O 16/2T
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How to achieve the goals?

o Global convergence:
{limianVf(Xk)H > 0} C E
k—o0
with P (E) = 0.

o Global rate:
{in, 197301 > ¢} < B

with P(E} ) being “low” when ¢ = C/V/k.

Let us find £ and Ej ...
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Iné 1

P ) T

Without imposing any assumption on the probabilistic behavior of {Dy}:

{timinf [V /X0l > 0} < {Zwk—po):—oo}.

k=0

Meaning:
If convergence does not hold, the ‘frequency’ of {Zj},>0 is ‘less than py'.
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Global rate: Another intuitive lemma

Without imposing any assumption on the probabilistic behavior of {Dy}:

{OIE?X IV (Xl > f} {ZZ [ L2+212)kﬁ +p0]k}-

f < oo is an upper bound for .7 ; p(cy) (existence guaranteed).

L < oo is a Lipshitz constant of Vf in R™.

Meaning:

If {|IVf(Xo)|l}o<e<k are all above ¢, the ‘frequency’ of {Zy}o<p<—1 is
‘not more than' pg + O(e 2k~ 1).
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Until now, no assumption is imposed on the probabilistic behavior of {D}.

Definition

The sequence {®y} is p-probabilistically r-descent if, for each k > 0,

P(cm(@k, —Vf(Xk)) Z K | @0, oo .,@kfl) Z D
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Global convergence

Lemma

If {Dy} is po-probabilistically r-descent, then { E’Zz_& (Ze—po) }isa
submartingale, and

If {Dy} is po-probabilistically k-descent, then

P(llggf IV £ (X0l =o> — 1

The analysis is inspired by that for probabilistic trust region.
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Global rate
Lemma (Chernoff bound)

Suppose that {®y} is p-probabilistically k-descent and X € (0,p). Then

k—1
P (Z Zp < Ak) < exp [—(I);—)\)Qk] .
/=0

p

Suppose that {®y} is p-probabilistically k-descent with p > py. Then

((L+1)ﬁ§] L) > 1 exp [_(P—Po)2k]'

P in ||Vf(X
(mm IVF(Xo)| < p—po)%/‘ﬂ NG 8p

0<l<k
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Global rate

Lemma (Chernoff bound)
Suppose that {®y} is p-probabilistically k-descent and X € (0,p). Then

k—1
P (Z Zp < Ak) < exp [—(I);—)\)Qk] .
/=0

p

Suppose that {®y} is p-probabilistically k-descent with p > py. Then

(L+1)p7 | 1 e [P0
(p—po)én] \/E) =1 p[ 8p k]

i <
P (mM V(X <

— O(1/vk) decaying rate for gradient holds with overwhelmingly high
probability, matching the deterministic case (Vicente 2013).
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Practical probabilistic descent sets

For each &k > 0,

@ ®y is independent of the previous iterations,

@ ©y is aset {01,...,0,,} of independent random vectors uniformly
distributed on the unit sphere.
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Practical probabilistic descent sets

{D\} generated in this way is probabilistically descent.

Proposition

Given T € [0,/n], {Dy} is p-probabilistically (7/+/n)-descent with

)
s 2 or ’

For instance,

|
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Practical probabilistic descent sets: WCC bounds

Plugging x = 1/(24/n) into the global rate, one obtains

WCC (number of iterations)
[4@ +1)%8 (ne_g)D > 1 exp [_B(p —po)(L+1)° (”G_ﬂ |

2p

P(K€<
b —Po

What about the number of function evaluations?

WCC (number of function evaluations)

P (Kg‘ <2 {M(ne—ﬂ) > 1 — the tiny tail.

b —DPo

= O(ne 2) with overwhelmingly high probability, better than the
deterministic case O(n%e~2) (Vicente 2013).



The competition

Relative performance: PSS v.s. Random polling sets (n = 40)

Dg  2n n+1 n/4 2 1
arglina 342 1030 6.01 188 1.00 -
arglinb 2050 738 281 185 1.00 2.04

broydn3d 433 654 359 128 1.00 -
dgrtic 7.16 9.10 456 170 1.00 -
engvall 10.53 1190 6.48 2.08 1.00 2.08
freuroth 56.00 1.00 1.67 1.67 1.00 4.00
integreq 16.04 1244 6.76 2.04 1.00 -
nondquar 6.90 756 423 187 1.00 -
sinquad - 165 201 100 155 -
vardim 1.00 180 240 180 1.80 4.30

Solution accuracy was 1073, Averages were taken over 10 independent runs.
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Concluding remarks

@ Probabilitic DS enjoys, with overwhelmingly high probability:
o the same WCC for number of iterations,

o possibly better WCC for number of function evaluations.

@ The analysis technique can be applied to probabilistic trust region
method = O(1/Vk) rate for gradient.

@ An interesting future work: randomized subspace method.
Let Gr(l,R™) be the set of all the [-dim linear subspaces of R".

Lemma (Randomized subspace)

Suppose that S is uniformly distributed on Gr(l,R™). Then for any
nonzero vector v € R™ and constant 6 € (0, 1),

P <||Pv|| > \/gnvn) > 1—exp [—é(a 11— m)].
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