Direct Search Based on Probabilistic Descent

Zaikun Zhang

University of Coimbra, moving to CERFACS-IRIT joint lab Joint work with S. Gratton, C. W. Royer, and L. N. Vicente

SIOPT — May 22, 2014, San Diego

It is a privilege to conclude the whole conference!

Unconstrained derivative-free optimization (DFO) $\min_{x \in \mathbb{R}^n} f(x)$ $f : \mathbb{R}^n \to \mathbb{R}$ f is bounded from below and differentiable $\nabla f \text{ is Lipschitz continuous but unavailable}$ Unconstrained derivative-free optimization (DFO) $\min_{x \in \mathbb{R}^n} f(x)$ $f : \mathbb{R}^n \to \mathbb{R}$ *f* is bounded from below and differentiable ∇f is Lipschitz continuous but unavailable

• Many real-world problems: derivatives are expensive or unreliable.

Unconstrained derivative-free optimization (DFO) $\min_{x \in \mathbb{R}^n} f(x)$ $f : \mathbb{R}^n \to \mathbb{R}$ f is bounded from below and differentiable $\nabla f \text{ is Lipschitz continuous but unavailable}$

- Many real-world problems: derivatives are expensive or unreliable.
- S. Gratton, P. Laloyaux, and A. Sartenaer, "Derivative-free Optimization for Large-scale Nonlinear Data Assimilation Problems", 2013.

Algorithms that

• do not use derivatives, and

Algorithms that

- do not use derivatives, and
- use function evaluations as few as possible.

Algorithms that

- do not use derivatives, and
- use function evaluations as few as possible.

And convergence theory of the algorithms.

- Two main classes of rigorous methods in DFO
 - Directional methods, like direct search (GPS, GSS, MADS ...)
 - Model-based methods, like trust region methods (DFO, NEWUOA, CONDER, BOOSTER, ORBIT ...)

Choose: x_0 , α_0 , $\gamma \in [1, \infty)$, $\theta \in (0, 1)$, and a forcing function ρ .

Choose: x_0 , α_0 , $\gamma \in [1, \infty)$, $\theta \in (0, 1)$, and a forcing function ρ .

For k = 0, 1, 2, ...

• **Polling:** Select a polling set D_k of directions, and seek $d_k \in D_k$:

 $f(x_k + \alpha_k d_k) < f(x_k) - \rho(\alpha_k).$

Choose: x_0 , α_0 , $\gamma \in [1, \infty)$, $\theta \in (0, 1)$, and a forcing function ρ .

For k = 0, 1, 2, ...

• **Polling:** Select a polling set D_k of directions, and seek $d_k \in D_k$:

 $f(x_k + \alpha_k d_k) < f(x_k) - \rho(\alpha_k).$

If d_k is found, the iteration is successful. Otherwise, it is unsuccessful.

Choose: x_0 , α_0 , $\gamma \in [1, \infty)$, $\theta \in (0, 1)$, and a forcing function ρ .

For k = 0, 1, 2, ...

• **Polling:** Select a polling set D_k of directions, and seek $d_k \in D_k$:

$$f(x_k + \alpha_k d_k) < f(x_k) - \rho(\alpha_k).$$

If d_k is found, the iteration is successful. Otherwise, it is unsuccessful.

• Update:

$$x_{k+1} = \begin{cases} x_k + \alpha_k d_k & \text{ if successful} \\ x_k & \text{ if unsuccessful,} \end{cases}$$

Choose: x_0 , α_0 , $\gamma \in [1, \infty)$, $\theta \in (0, 1)$, and a forcing function ρ .

For k = 0, 1, 2, ...

• **Polling:** Select a polling set D_k of directions, and seek $d_k \in D_k$:

$$f(x_k + \alpha_k d_k) < f(x_k) - \rho(\alpha_k).$$

If d_k is found, the iteration is successful. Otherwise, it is unsuccessful.

• Update:

$$x_{k+1} = \begin{cases} x_k + \alpha_k d_k & \text{if successful} \\ x_k & \text{if unsuccessful,} \end{cases}$$
$$\alpha_{k+1} = \begin{cases} \gamma \alpha_k & \text{if successful} \\ \theta \alpha_k & \text{if unsuccessful.} \end{cases}$$

Choose: x_0 , α_0 , $\gamma \in [1, \infty)$, $\theta \in (0, 1)$, and a forcing function ρ .

For k = 0, 1, 2, ...

• **Polling:** Select a polling set D_k of directions, and seek $d_k \in D_k$:

$$f(x_k + \alpha_k d_k) < f(x_k) - \rho(\alpha_k).$$

If d_k is found, the iteration is successful. Otherwise, it is unsuccessful.

• Update:

$$x_{k+1} = \begin{cases} x_k + \alpha_k d_k & \text{if successful} \\ x_k & \text{if unsuccessful,} \end{cases}$$
$$\alpha_{k+1} = \begin{cases} \gamma \alpha_k & \text{if successful} \\ \theta \alpha_k & \text{if unsuccessful.} \end{cases}$$

A forcing function ρ is a positive and monotonically nondecreasing function such that

$$\lim_{\alpha \downarrow 0} \frac{\rho(\alpha)}{\alpha} = 0.$$

A forcing function ρ is a positive and monotonically nondecreasing function such that

$$\lim_{\alpha \downarrow 0} \frac{\rho(\alpha)}{\alpha} = 0.$$

In this talk:

$$\rho(\alpha) = \frac{\alpha^2}{2}$$

$$\alpha_0 = 1 \quad \text{(initial stepsize)}$$

$$\gamma = 2 \quad \text{(increasing factor)}$$

$$\theta = \frac{1}{2} \quad \text{(decreasing factor)}$$

Traditional polling set: PSS

• Positive spanning set (PSS):

 $D = \{d_1, \ldots, d_m\}$ is a PSS if it spans \mathbb{R}^n positively:

$$\mathbb{R}^n = \left\{ \sum_{i=1}^m \mu_i d_i : \mu_i \ge 0 \ (1 \le i \le m) \right\}.$$

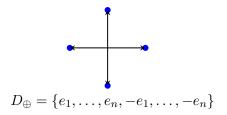
Traditional polling set: PSS

• Positive spanning set (PSS):

 $D = \{d_1, \ldots, d_m\}$ is a PSS if it spans \mathbb{R}^n positively:

$$\mathbb{R}^n = \left\{ \sum_{i=1}^m \mu_i d_i : \mu_i \ge 0 \ (1 \le i \le m) \right\}.$$

Example:



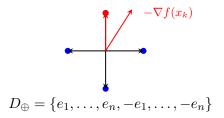
Traditional polling set: PSS

• Positive spanning set (PSS):

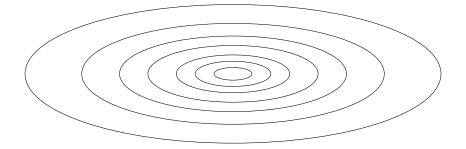
 $D = \{d_1, \ldots, d_m\}$ is a PSS if it spans \mathbb{R}^n positively:

$$\mathbb{R}^n = \left\{ \sum_{i=1}^m \mu_i d_i : \mu_i \ge 0 \ (1 \le i \le m) \right\}.$$

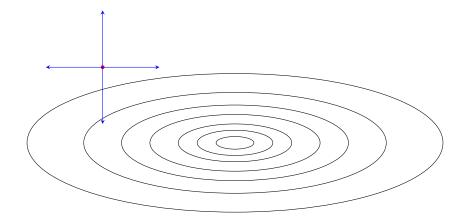
Example:



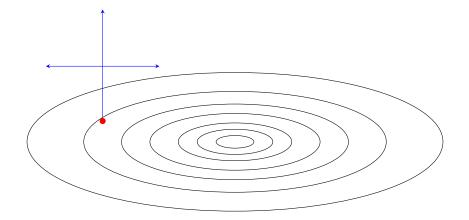
• $\exists d \in D$ that 'approximates' $-\nabla f(x_k)$, meaning $d^{\top}[-\nabla f(x_k)] > 0$.



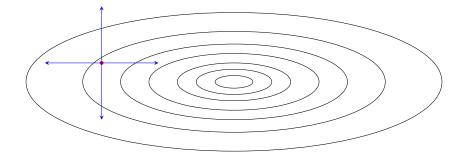
$$n = 2, \quad D = D_{\oplus} = \{e_1, e_2, -e_1, -e_2\}$$



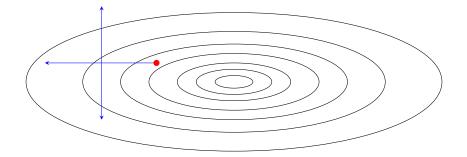
$$n = 2, \quad D = D_{\oplus} = \{e_1, e_2, -e_1, -e_2\}$$



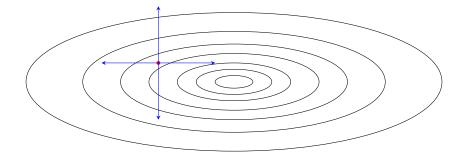
$$n = 2, \quad D = D_{\oplus} = \{e_1, e_2, -e_1, -e_2\}$$



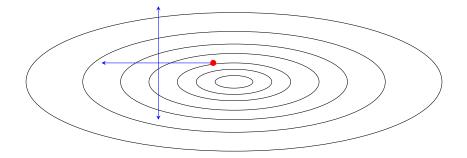
$$n = 2, \quad D = D_{\oplus} = \{e_1, e_2, -e_1, -e_2\}$$



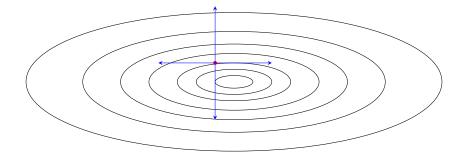
$$n = 2, \quad D = D_{\oplus} = \{e_1, e_2, -e_1, -e_2\}$$



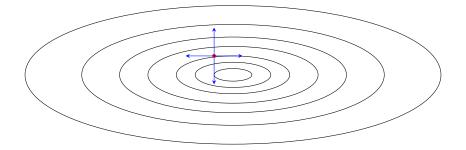
$$n = 2, \quad D = D_{\oplus} = \{e_1, e_2, -e_1, -e_2\}$$



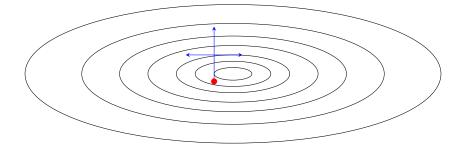
$$n = 2, \quad D = D_{\oplus} = \{e_1, e_2, -e_1, -e_2\}$$



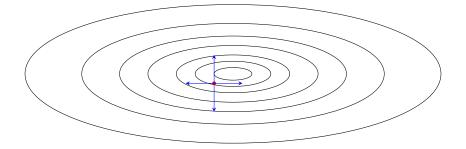
$$n = 2, \quad D = D_{\oplus} = \{e_1, e_2, -e_1, -e_2\}$$



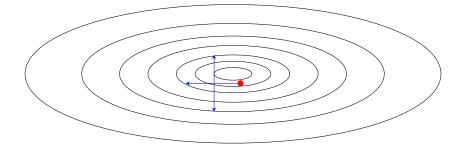
$$n = 2, \quad D = D_{\oplus} = \{e_1, e_2, -e_1, -e_2\}$$



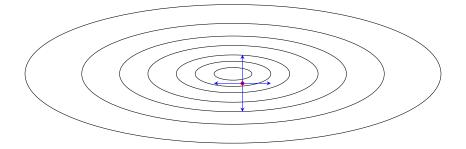
$$n = 2, \quad D = D_{\oplus} = \{e_1, e_2, -e_1, -e_2\}$$



$$n = 2, \quad D = D_{\oplus} = \{e_1, e_2, -e_1, -e_2\}$$



$$n = 2, \quad D = D_{\oplus} = \{e_1, e_2, -e_1, -e_2\}$$



$$n = 2, \quad D = D_{\oplus} = \{e_1, e_2, -e_1, -e_2\}$$

The quality of a PSS: Cosine measure

• Cosine measure: the ability of D to 'approximate' directions in \mathbb{R}^n .

$$\operatorname{cm}(D) = \min_{0 \neq v \in \mathbb{R}^n} \max_{d \in D} \frac{d^{\top} v}{\|d\| \|v\|}.$$

The quality of a PSS: Cosine measure

• Cosine measure: the ability of D to 'approximate' directions in \mathbb{R}^n .

$$\operatorname{cm}(D) = \min_{0 \neq v \in \mathbb{R}^n} \max_{d \in D} \frac{d^{\top} v}{\|d\| \|v\|}.$$

• Cosine of the largest angle 'between D and the vectors in $\mathbb{R}^{n'}$.

The quality of a PSS: Cosine measure

• Cosine measure: the ability of D to 'approximate' directions in \mathbb{R}^n .

$$\operatorname{cm}(D) = \min_{0 \neq v \in \mathbb{R}^n} \max_{d \in D} \frac{d^{\top} v}{\|d\| \|v\|}.$$

• Cosine of the largest angle 'between D and the vectors in $\mathbb{R}^{n'}$.

• For each $v \in \mathbb{R}^n$, there exists $d \in D$ such that

 $d^{\top}v \geq \operatorname{cm}(D) \|d\| \|v\|,$

The quality of a PSS: Cosine measure

• Cosine measure: the ability of D to 'approximate' directions in \mathbb{R}^n .

$$\operatorname{cm}(D) = \min_{0 \neq v \in \mathbb{R}^n} \max_{d \in D} \frac{d^{\top} v}{\|d\| \|v\|}.$$

• Cosine of the largest angle 'between D and the vectors in $\mathbb{R}^{n'}$.

• For each $v \in \mathbb{R}^n$, there exists $d \in D$ such that

$$d^{\top}v \geq \operatorname{cm}(D) \|d\| \|v\|,$$

especially when $v = -\nabla f(x_k)$.

The quality of a PSS: Cosine measure

• Cosine measure: the ability of D to 'approximate' directions in \mathbb{R}^n .

$$\operatorname{cm}(D) = \min_{0 \neq v \in \mathbb{R}^n} \max_{d \in D} \frac{d^{\top} v}{\|d\| \|v\|}.$$

• Cosine of the largest angle 'between D and the vectors in $\mathbb{R}^{n'}$.

• For each $v \in \mathbb{R}^n$, there exists $d \in D$ such that

$$d^{\top}v \geq \operatorname{cm}(D) \|d\| \|v\|,$$

especially when $v = -\nabla f(x_k)$.

• Example:

$$\operatorname{cm}(D_{\oplus}) = \frac{1}{\sqrt{n}}.$$

Global converence:

Theorem (Torczon 1997, Kolda, Lewis, and Torczon 2003)

• $\liminf_{k \to \infty} \|\nabla f(x_k)\| = 0.$

Global converence:

Theorem (Torczon 1997, Kolda, Lewis, and Torczon 2003)

• $\liminf_{k\to\infty} \|\nabla f(x_k)\| = 0.$

Global rate and worst case complexity (WCC):

Global rate and worst case complexity (Vicente 2013)

• $\min_{0 \le \ell \le k} \|\nabla f(x_\ell)\| = \mathcal{O}(1/\sqrt{k}).$

• $\|\nabla f(x_k)\|$ is driven under ϵ within $\mathcal{O}(\epsilon^{-2})$ iterations.

Global converence:

Theorem (Torczon 1997, Kolda, Lewis, and Torczon 2003)

• $\liminf_{k \to \infty} \|\nabla f(x_k)\| = 0.$

Global rate and worst case complexity (WCC):

Global rate and worst case complexity (Vicente 2013)

• $\min_{0 \le \ell \le k} \|\nabla f(x_\ell)\| = \mathcal{O}(1/\sqrt{k}).$

• $\|\nabla f(x_k)\|$ is driven under ϵ within $\mathcal{O}(\epsilon^{-2})$ iterations.

Question: Does the theory cover the most efficient implementation of DS?

A competitor against PSS: Random polling set

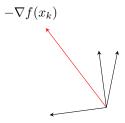
- Success of random coordinate descent, stochastic gradient ...
 - Y. Nesterov, "Efficiency of coordinate descent methods on huge-scale optimization problems", SIAM Journal on Optimization, 22(2), 341-362, 2012
 - P. Richtárik, M. Takáč, "Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function." Mathematical Programming 144(1-2): 1-38, 2014
 - Z. Lu, and L. Xiao. "On the complexity analysis of randomized block-coordinate descent methods", no. MSR-TR-2013-53, May 2013

• . . .

A competitor against PSS: Random polling set

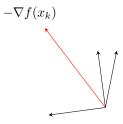
- Success of random coordinate descent, stochastic gradient ...
 - Y. Nesterov, "Efficiency of coordinate descent methods on huge-scale optimization problems", SIAM Journal on Optimization, 22(2), 341-362, 2012
 - P. Richtárik, M. Takáč, "Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function." Mathematical Programming 144(1-2): 1-38, 2014
 - Z. Lu, and L. Xiao. "On the complexity analysis of randomized block-coordinate descent methods", no. MSR-TR-2013-53, May 2013
 - . . .
- Sucess of randomization in derivative-free methods, with insightful theories:
 - A. S. Bandeira, K. Scheinberg, and L. N. Vicente, "Convergence of trust-region methods based on probabilistic models", submitted
 - K. Scheinberg, "Convergence rates of line-search and trust region methods based on probabilistic models", MS16, SIOPT14

 $-\nabla f(x_k)$



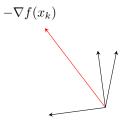
 $n+1 \ {\rm random} \ {\rm polling} \ {\rm directions}$

in this case not a $\ensuremath{\mathsf{PSS}}$



 $n+1 \ {\rm random} \ {\rm polling} \ {\rm directions}$

in this case not a PSS

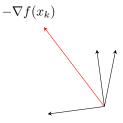


n+1 random polling directions

in this case not a $\ensuremath{\mathsf{PSS}}$

 $\leq n$ random polling directions

certainly not a PSS ...



n+1 random polling directions

in this case not a PSS

 $\leq n$ random polling directions

certainly not a PSS ...

 D_k is 'good' in some probabilistic sense ...

If derivatives were available, it would have been sufficient to require

$$\max_{d \in D} \frac{-d^{\top} \nabla f(x_k)}{\|d\| \|\nabla f(x_k)\|} \geq \kappa.$$

If derivatives were available, it would have been sufficient to require

$$\max_{d \in D} \frac{-d^{\top} \nabla f(x_k)}{\|d\| \|\nabla f(x_k)\|} \geq \kappa.$$

Define the cosine measure of D given v by

$$\operatorname{cm}(D, v) = \max_{d \in D} \frac{d^{\top} v}{\|d\| \|v\|}.$$

Then $\operatorname{cm}(D, -\nabla f(x_k)) \geq \kappa$ would have been enough.

If derivatives were available, it would have been sufficient to require

$$\max_{d \in D} \frac{-d^{\top} \nabla f(x_k)}{\|d\| \|\nabla f(x_k)\|} \geq \kappa.$$

Define the cosine measure of D given v by

$$\operatorname{cm}(D, v) = \max_{d \in D} \frac{d^{\top} v}{\|d\| \|v\|}.$$

Then $\operatorname{cm}(D, -\nabla f(x_k)) \geq \kappa$ would have been enough.

But derivatives are not available!

From now on, we suppose that the polling directions are not defined deterministically but taken at random from the unit sphere S^{n-1} .

From now on, we suppose that the polling directions are not defined deterministically but taken at random from the unit sphere S^{n-1} .

Distinguish random v	variables	from	realizations
----------------------	-----------	------	--------------

	Iterate	Polling set
Random variables	X_k	\mathfrak{D}_k
Realizations	x_k	D_k

What is desirable?

• Global convergence:

$$\mathbb{P}\left(\liminf_{k \to \infty} \|\nabla f(X_k)\| = 0\right) = 1?$$

What is desirable?

• Global convergence:

$$\mathbb{P}\left(\liminf_{k\to\infty} \|\nabla f(X_k)\| = 0\right) = 1?$$

• Global rate:

$$\mathbb{P}\left(\min_{0\leq\ell\leq k}\|\nabla f(X_k)\|\leq \frac{C}{\sqrt{k}}\right)$$
 is 'high'

for some properly selected constant C?

How to achieve the goals?

• Global convergence:

$$\left\{\liminf_{k\to\infty} \|\nabla f(X_k)\| > 0\right\} \subset \mathbf{E}$$

with $\mathbb{P}(E) = 0$.

• Global convergence:

$$\left\{\liminf_{k\to\infty} \|\nabla f(X_k)\| > 0\right\} \subset \mathbf{E}$$

with $\mathbb{P}(E) = 0$.

Global rate:

$$\left\{\min_{0\leq\ell\leq k}\|\nabla f(X_k)\|>\epsilon\right\} \subset E_{k,\epsilon},$$

with $\mathbb{P}(E_{k,\epsilon})$ being "low" when $\epsilon = C/\sqrt{k}$.

Global convergence:

$$\left\{\liminf_{k\to\infty} \|\nabla f(X_k)\| > 0\right\} \subset \mathbf{E}$$

with $\mathbb{P}(E) = 0$.

• Global rate:
$$\left\{\min_{0\leq\ell\leq k}\|
abla f(X_k)\|>\epsilon
ight\}\ \subset\ E_{k,\epsilon},$$

with $\mathbb{P}(E_{k,\epsilon})$ being "low" when $\epsilon = C/\sqrt{k}$.

Let us find E and $E_{k,\epsilon}$...

Global convergence: An intuitive lemma

Let Z_k be the indicator function of $\{\operatorname{cm}(\mathfrak{D}_k, -\nabla f(X_k)) \geq \kappa\}$, and

$$p_0 = rac{\ln heta}{\ln(\gamma^{-1} heta)} = rac{1}{2}.$$

Global convergence: An intuitive lemma

Let Z_k be the indicator function of $\{\operatorname{cm}(\mathfrak{D}_k, -\nabla f(X_k)) \geq \kappa\}$, and

$$p_0 = rac{\ln heta}{\ln(\gamma^{-1} heta)} = rac{1}{2}.$$

Without imposing any assumption on the probabilistic behavior of $\{\mathfrak{D}_k\}$:

Lemma

$$\left\{ \liminf_{k \to \infty} \|\nabla f(X_k)\| > 0 \right\} \subset \left\{ \sum_{k=0}^{\infty} \left(Z_k - p_0 \right) = -\infty \right\}.$$

Global convergence: An intuitive lemma

Let Z_k be the indicator function of $\{\operatorname{cm}(\mathfrak{D}_k, -\nabla f(X_k)) \geq \kappa\}$, and

$$p_0 = rac{\ln heta}{\ln(\gamma^{-1} heta)} = rac{1}{2}.$$

Without imposing any assumption on the probabilistic behavior of $\{\mathfrak{D}_k\}$:

Lemma

$$\left\{ \liminf_{k \to \infty} \|\nabla f(X_k)\| > 0 \right\} \subset \left\{ \sum_{k=0}^{\infty} (Z_k - p_0) = -\infty \right\}.$$

Meaning:

If convergence does not hold, the 'frequency' of $\{Z_k\}_{k\geq 0}$ is 'less than p_0 '.

Global rate: Another intuitive lemma

Without imposing any assumption on the probabilistic behavior of $\{\mathfrak{D}_k\}$:

Lemma

$$\left\{\max_{0\leq\ell\leq k}\|\nabla f(X_k)\|>\epsilon\right\} \subset \left\{\sum_{\ell=0}^{k-1}Z_\ell\leq \left[\frac{(L+1)^2\beta}{2\kappa^2\epsilon^2k}+p_0\right]k\right\}.$$

 $\beta < \infty$ is an upper bound for $\sum_{k=0}^{\infty} \rho(\alpha_k)$ (existence guaranteed). $L < \infty$ is a Lipshitz constant of ∇f in \mathbb{R}^n .

Global rate: Another intuitive lemma

Without imposing any assumption on the probabilistic behavior of $\{\mathfrak{D}_k\}$:

Lemma

$$\left\{\max_{0\leq\ell\leq k}\|\nabla f(X_k)\|>\epsilon\right\} \subset \left\{\sum_{\ell=0}^{k-1} Z_\ell \leq \left[\frac{(L+1)^2\beta}{2\kappa^2\epsilon^2k}+p_0\right]k\right\}.$$

 $\beta < \infty$ is an upper bound for $\sum_{k=0}^{\infty} \rho(\alpha_k)$ (existence guaranteed). $L < \infty$ is a Lipshitz constant of ∇f in \mathbb{R}^n .

Meaning:

If $\{\|\nabla f(X_0)\|\}_{0 \le \ell \le k}$ are all above ϵ , the 'frequency' of $\{Z_\ell\}_{0 \le \ell \le k-1}$ is 'not more than' $p_0 + \mathcal{O}(\epsilon^{-2}k^{-1})$.

Until now, no assumption is imposed on the probabilistic behavior of $\{\mathfrak{D}_k\}$.

Until now, no assumption is imposed on the probabilistic behavior of $\{\mathfrak{D}_k\}$.

Definition

The sequence $\{\mathfrak{D}_k\}$ is *p*-probabilistically κ -descent if, for each $k \ge 0$,

 $\mathbb{P}\big(\mathrm{cm}(\mathfrak{D}_k,-\nabla f(X_k))\ \geq\ \kappa\mid\mathfrak{D}_0,\ldots,\mathfrak{D}_{k-1}\big)\geq\ p.$

Lemma

If $\{\mathfrak{D}_k\}$ is p_0 -probabilistically κ -descent, then $\left\{\sum_{\ell=0}^{k-1} (Z_\ell - p_0)\right\}$ is a submartingale, and

$$\mathbb{P}\left(\sum_{k=0}^{\infty} \left(Z_k - p_0\right) = -\infty\right) = 0.$$

Lemma

If $\{\mathfrak{D}_k\}$ is p_0 -probabilistically κ -descent, then $\left\{\sum_{\ell=0}^{k-1} (Z_\ell - p_0)\right\}$ is a submartingale, and

$$\mathbb{P}\left(\sum_{k=0}^{\infty} \left(Z_k - p_0\right) = -\infty\right) = 0.$$

Theorem

If $\{\mathfrak{D}_k\}$ is p_0 -probabilistically κ -descent, then

$$\mathbb{P}\left(\liminf_{k \to \infty} \|\nabla f(X_k)\| = 0\right) = 1.$$

The analysis is inspired by that for probabilistic trust region.

Lemma (Chernoff bound)

Suppose that $\{\mathfrak{D}_k\}$ is *p*-probabilistically κ -descent and $\lambda \in (0, p)$. Then

$$\mathbb{P}\left(\sum_{\ell=0}^{k-1} Z_{\ell} \le \lambda k\right) \le \exp\left[-\frac{(p-\lambda)^2}{2p}k\right].$$

Lemma (Chernoff bound)

Suppose that $\{\mathfrak{D}_k\}$ is *p*-probabilistically κ -descent and $\lambda \in (0, p)$. Then

$$\mathbb{P}\left(\sum_{\ell=0}^{k-1} Z_{\ell} \le \lambda k\right) \le \exp\left[-\frac{(p-\lambda)^2}{2p}k\right].$$

Theorem

Suppose that $\{\mathfrak{D}_k\}$ is *p*-probabilistically κ -descent with $p > p_0$. Then

$$\mathbb{P}\left(\min_{0 \le \ell \le k} \|\nabla f(X_{\ell})\| \le \left[\frac{(L+1)\beta^{\frac{1}{2}}}{(p-p_0)^{\frac{1}{2}}\kappa}\right] \frac{1}{\sqrt{k}}\right) \ge 1 - \exp\left[-\frac{(p-p_0)^2}{8p}k\right].$$

Lemma (Chernoff bound)

Suppose that $\{\mathfrak{D}_k\}$ is *p*-probabilistically κ -descent and $\lambda \in (0, p)$. Then

$$\mathbb{P}\left(\sum_{\ell=0}^{k-1} Z_{\ell} \le \lambda k\right) \le \exp\left[-\frac{(p-\lambda)^2}{2p}k\right].$$

Theorem

Suppose that $\{\mathfrak{D}_k\}$ is *p*-probabilistically κ -descent with $p > p_0$. Then

$$\mathbb{P}\left(\min_{0 \le \ell \le k} \|\nabla f(X_{\ell})\| \le \left[\frac{(L+1)\beta^{\frac{1}{2}}}{(p-p_0)^{\frac{1}{2}}\kappa}\right] \frac{1}{\sqrt{k}}\right) \ge 1 - \exp\left[-\frac{(p-p_0)^2}{8p}k\right].$$

 $\implies O(1/\sqrt{k})$ decaying rate for gradient holds with overwhelmingly high probability, matching the deterministic case (Vicente 2013).

For each $k \ge 0$,

• \mathfrak{D}_k is independent of the previous iterations,

For each $k \ge 0$,

- \mathfrak{D}_k is independent of the previous iterations,
- \mathfrak{D}_k is a set $\{\mathfrak{d}_1, \ldots, \mathfrak{d}_m\}$ of independent random vectors uniformly distributed on the unit sphere.

 $\{\mathfrak{D}_k\}$ generated in this way is probabilistically descent.

Proposition

Given $au \in [0,\sqrt{n}]$, $\{\mathfrak{D}_k\}$ is *p*-probabilistically (au/\sqrt{n}) -descent with

$$p = 1 - \left(\frac{1}{2} + \frac{\tau}{\sqrt{2\pi}}\right)^m$$

 $\{\mathfrak{D}_k\}$ generated in this way is probabilistically descent.

Proposition

Given $au \in [0,\sqrt{n}]$, $\{\mathfrak{D}_k\}$ is *p*-probabilistically (au/\sqrt{n}) -descent with

$$p = 1 - \left(\frac{1}{2} + \frac{\tau}{\sqrt{2\pi}}\right)^m$$

For instance,

$$\begin{array}{ccc} m & = & 2 \\ & & \\ \tau & = & \frac{1}{2} \end{array} \right\} \quad \Longrightarrow \quad p \, > \, \frac{1}{2} \, = \, p_0.$$

Practical probabilistic descent sets: WCC bounds

Plugging $\kappa = 1/(2\sqrt{n})$ into the global rate, one obtains

WCC (number of iterations)
$$\mathbb{P}\left(K_{\epsilon} \leq \left\lceil \frac{4(L+1)^2 \beta}{p-p_0} (n\epsilon^{-2}) \right\rceil \right) \geq 1 - \exp\left[-\frac{\beta(p-p_0)(L+1)^2}{2p} (n\epsilon^{-2})\right].$$

Practical probabilistic descent sets: WCC bounds

Plugging $\kappa = 1/(2\sqrt{n})$ into the global rate, one obtains

WCC (number of iterations)
$$\mathbb{P}\left(K_{\epsilon} \leq \left\lceil \frac{4(L+1)^{2}\beta}{p-p_{0}}(n\epsilon^{-2}) \right\rceil\right) \geq 1 - \exp\left[-\frac{\beta(p-p_{0})(L+1)^{2}}{2p}(n\epsilon^{-2})\right].$$

What about the number of function evaluations?

Practical probabilistic descent sets: WCC bounds

Plugging $\kappa = 1/(2\sqrt{n})$ into the global rate, one obtains

WCC (number of iterations)
$$\mathbb{P}\left(K_{\epsilon} \leq \left\lceil \frac{4(L+1)^2 \beta}{p-p_0} (n\epsilon^{-2}) \right\rceil\right) \geq 1 - \exp\left[-\frac{\beta(p-p_0)(L+1)^2}{2p} (n\epsilon^{-2})\right].$$

What about the number of function evaluations?

WCC (number of function evaluations) $\mathbb{P}\left(K_{\epsilon}^{f} \leq 2\left\lceil \frac{4(L+1)^{2}\beta}{p-p_{0}}(n\epsilon^{-2}) \right\rceil\right) \geq 1 - \text{ the tiny tail.}$

 $\implies \mathcal{O}(n\epsilon^{-2})$ with overwhelmingly high probability, better than the deterministic case $\mathcal{O}(n^2\epsilon^{-2})$ (Vicente 2013).

Relative performance: PSS v.s. Random polling sets (n = 40)

	D_\oplus	2n	n+1	n/4	2	1
arglina	3.42	10.30	6.01	1.88	1.00	_
arglinb	20.50	7.38	2.81	1.85	1.00	2.04
broydn3d	4.33	6.54	3.59	1.28	1.00	_
dqrtic	7.16	9.10	4.56	1.70	1.00	_
engval1	10.53	11.90	6.48	2.08	1.00	2.08
freuroth	56.00	1.00	1.67	1.67	1.00	4.00
integreq	16.04	12.44	6.76	2.04	1.00	_
nondquar	6.90	7.56	4.23	1.87	1.00	_
sinquad	-	1.65	2.01	1.00	1.55	_
vardim	1.00	1.80	2.40	1.80	1.80	4.30

Solution accuracy was 10^{-3} . Averages were taken over 10 independent runs.

• Probabilitic DS enjoys, with overwhelmingly high probability:

• the same WCC for number of iterations,

- Probabilitic DS enjoys, with overwhelmingly high probability:
 - the same WCC for number of iterations,
 - possibly better WCC for number of function evaluations.

- Probabilitic DS enjoys, with overwhelmingly high probability:
 - the same WCC for number of iterations,
 - possibly better WCC for number of function evaluations.
- The analysis technique can be applied to probabilistic trust region method $\implies O(1/\sqrt{k})$ rate for gradient.

- Probabilitic DS enjoys, with overwhelmingly high probability:
 - the same WCC for number of iterations,
 - possibly better WCC for number of function evaluations.
- The analysis technique can be applied to probabilistic trust region method $\implies O(1/\sqrt{k})$ rate for gradient.
- An interesting future work: randomized subspace method.

- Probabilitic DS enjoys, with overwhelmingly high probability:
 - the same WCC for number of iterations,
 - possibly better WCC for number of function evaluations.
- The analysis technique can be applied to probabilistic trust region method $\implies O(1/\sqrt{k})$ rate for gradient.
- An interesting future work: randomized subspace method. Let $\operatorname{Gr}(l,\mathbb{R}^n)$ be the set of all the *l*-dim linear subspaces of \mathbb{R}^n .

Lemma (Randomized subspace)

Suppose that *S* is uniformly distributed on $\operatorname{Gr}(l, \mathbb{R}^n)$. Then for any nonzero vector $v \in \mathbb{R}^n$ and constant $\delta \in (0, 1)$,

$$\mathbb{P}\left(\|Pv\| \ge \sqrt{\frac{l\delta}{n}}\|v\|\right) \ge 1 - \exp\left[-\frac{l}{2}\left(\delta - 1 - \ln\delta\right)\right].$$