
.

...... Direct Search Based on Probabilistic Descent

Zaikun Zhang

University of Coimbra, moving to CERFACS-IRIT joint lab

Joint work with S. Gratton, C. W. Royer, and L. N. Vicente

SIOPT — May 22, 2014, San Diego

1/27



.. Privilege

.

...... It is a privilege to conclude the whole conference!
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.. Problem setting

.
Unconstrained derivative-free optimization (DFO)
..

......

min
x∈Rn

f(x)

f : Rn → R

f is bounded from below and differentiable
∇f is Lipschitz continuous but unavailable

Many real-world problems: derivatives are expensive or unreliable.

S. Gratton, P. Laloyaux, and A. Sartenaer, “Derivative-free Optimization for

Large-scale Nonlinear Data Assimilation Problems”, 2013.
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.. Derivative-free optimization: What is desirable?

Algorithms that

do not use derivatives, and

use function evaluations as few as possible.

And convergence theory of the algorithms.
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.. Existing methods

Two main classes of rigorous methods in DFO

Directional methods, like direct search (GPS, GSS, MADS ...)

Model-based methods, like trust region methods (DFO, NEWUOA,
CONDER, BOOSTER, ORBIT ...)

5/27



.. Direct search (DS)

Choose: x0, α0, γ ∈ [1,∞), θ ∈ (0, 1), and a forcing function ρ.

For k = 0, 1, 2, . . .

Polling: Select a polling set of directions, and seek dk ∈ Dk:

f(xk + αkdk) < f(xk)− ρ(αk).

If dk is found, the iteration is successful. Otherwise, it is unsuccessful.

Update:

xk+1 =

{
xk + αkdk if successful

xk if unsuccessful,

αk+1 =

{
γαk if successful

θαk if unsuccessful.
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.. More ...

A forcing function ρ is a positive and monotonically nondecreasing
function such that

lim
α↓0

ρ(α)

α
= 0.

In this talk:

ρ(α) =
α2

2

α0 = 1 (initial stepsize)

γ = 2 (increasing factor)

θ =
1

2
(decreasing factor)
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.. Traditional polling set: PSS

Positive spanning set (PSS):

D = {d1, . . . , dm} is a PSS if it spans Rn positively:

Rn =

{
m∑
i=1

µidi : µi ≥ 0 (1 ≤ i ≤ m)

}
.

Example:

.

D⊕ = {e1, . . . , en,−e1, . . . ,−en}

∃ d ∈ D that ‘approximates’ −∇f(xk), meaning d⊤[−∇f(xk)] > 0.
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.. Example: Coordinate search

.

n = 2, D = D⊕ = {e1, e2,−e1,−e2}
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.. The quality of a PSS: Cosine measure

Cosine measure: the ability of D to ‘approximate’ directions in Rn.

cm(D) = min
0̸=v∈Rn

max
d∈D

d⊤v

∥d∥∥v∥
.

Cosine of the largest angle ‘between D and the vectors in Rn’.

For each v ∈ Rn, there exists d ∈ D such that

d⊤v ≥ cm(D)∥d∥∥v∥,

especially when v = −∇f(xk).

Example:

cm(D⊕) =
1√
n
.
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.. DS with PSS: Theory

Let {Dk} be a sequence of PSSs such that cm(Dk) ≥ κ > 0 for each k.

Global converence:
.
Theorem (Torczon 1997, Kolda, Lewis, and Torczon 2003)
..

......
lim infk→∞∥∇f(xk)∥ = 0.

Global rate and worst case complexity (WCC):
.
Global rate and worst case complexity (Vicente 2013)
..

......

min0≤ℓ≤k ∥∇f(xℓ)∥ = O(1/
√
k).

∥∇f(xk)∥ is driven under ϵ within O(ϵ−2) iterations.

Question: Does the theory cover the most efficient implementation of DS?
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.. A competitor against PSS: Random polling set

Success of random coordinate descent, stochastic gradient . . .

Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale
optimization problems”, SIAM Journal on Optimization, 22(2),
341-362, 2012
P. Richtárik, M. Takáč, “Iteration complexity of randomized
block-coordinate descent methods for minimizing a composite
function.” Mathematical Programming 144(1-2): 1-38, 2014
Z. Lu, and L. Xiao. “On the complexity analysis of randomized
block-coordinate descent methods”, no. MSR-TR-2013-53, May 2013
. . .

Sucess of randomization in derivative-free methods, with insightful
theories:

A. S. Bandeira, K. Scheinberg, and L. N. Vicente, “Convergence of

trust-region methods based on probabilistic models”, submitted

K. Scheinberg, “Convergence rates of line-search and trust region

methods based on probabilistic models”, MS16, SIOPT14
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.. Using random polling sets: What will happen?

.

.−∇f(xk)
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.. What do we mean by ‘good’?

If derivatives were available, it would have been sufficient to require
.

......
max
d∈D

−d⊤∇f(xk)

∥d∥∥∇f(xk)∥
≥ κ.

Define the cosine measure of D given v by

cm(D, v) = max
d∈D

d⊤v

∥d∥∥v∥
.

Then cm(D,−∇f(xk)) ≥ κ would have been enough.

But derivatives are not available!
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.. Random variables v.s. realizations

From now on, we suppose that the polling directions are not defined
deterministically but taken at random from the unit sphere Sn−1.

Distinguish random variables from realizations

Iterate Polling set

Random variables Xk Dk

Realizations xk Dk
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.. What is desirable?

Global convergence:

P
(
lim inf
k→∞

∥∇f(Xk)∥ = 0

)
= 1 ?

Global rate:

P
(

min
0≤ℓ≤k

∥∇f(Xk)∥ ≤ C√
k

)
is ‘high’

for some properly selected constant C?
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.. How to achieve the goals?

Global convergence:{
lim inf
k→∞

∥∇f(Xk)∥ > 0

}
⊂ E

with P (E) = 0.

Global rate: {
min
0≤ℓ≤k

∥∇f(Xk)∥ > ϵ

}
⊂ Ek,ϵ,

with P(Ek,ϵ) being “low” when ϵ = C/
√
k.

Let us find E and Ek,ϵ ...

17/27



.. How to achieve the goals?

Global convergence:{
lim inf
k→∞

∥∇f(Xk)∥ > 0

}
⊂ E

with P (E) = 0.

Global rate: {
min
0≤ℓ≤k

∥∇f(Xk)∥ > ϵ

}
⊂ Ek,ϵ,

with P(Ek,ϵ) being “low” when ϵ = C/
√
k.

Let us find E and Ek,ϵ ...

17/27



.. How to achieve the goals?

Global convergence:{
lim inf
k→∞

∥∇f(Xk)∥ > 0

}
⊂ E

with P (E) = 0.

Global rate: {
min
0≤ℓ≤k

∥∇f(Xk)∥ > ϵ

}
⊂ Ek,ϵ,

with P(Ek,ϵ) being “low” when ϵ = C/
√
k.

Let us find E and Ek,ϵ ...

17/27



.. Global convergence: An intuitive lemma

Let Zk be the indicator function of
{
cm
(
Dk,−∇f(Xk)

)
≥ κ

}
, and

p0 =
ln θ

ln(γ−1θ)
=

1

2
.

Without imposing any assumption on the probabilistic behavior of {Dk}:
.
Lemma
..

......

{
lim inf
k→∞

∥∇f(Xk)∥ > 0
}

⊂

{ ∞∑
k=0

(Zk − p0) = −∞

}
.

Meaning:

If convergence does not hold, the ‘frequency’ of {Zk}k≥0 is ‘less than p0’.
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.. Global rate: Another intuitive lemma

Without imposing any assumption on the probabilistic behavior of {Dk}:
.
Lemma
..

......

{
max
0≤ℓ≤k

∥∇f(Xk)∥ > ϵ

}
⊂

{
k−1∑
ℓ=0

Zℓ ≤
[
(L+ 1)2β

2κ2ϵ2k
+ p0

]
k

}
.

β < ∞ is an upper bound for
∑∞

k=0 ρ(αk) (existence guaranteed).

L < ∞ is a Lipshitz constant of ∇f in Rn.

Meaning:

If {∥∇f(X0)∥}0≤ℓ≤k are all above ϵ, the ‘frequency’ of {Zℓ}0≤ℓ≤k−1 is
‘not more than’ p0 +O(ϵ−2k−1).
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.. What assumptions to impose?

Until now, no assumption is imposed on the probabilistic behavior of {Dk}.

.
Definition
..

......

The sequence {Dk} is p-probabilistically κ-descent if, for each k ≥ 0,

P
(
cm(Dk,−∇f(Xk)) ≥ κ | D0, . . . ,Dk−1

)
≥ p.
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.. Global convergence

.
Lemma
..

......

If {Dk} is p0-probabilistically κ-descent, then
{∑k−1

ℓ=0 (Zℓ − p0)
}
is a

submartingale, and

P

( ∞∑
k=0

(Zk − p0) = −∞

)
= 0.

.
Theorem
..

......

If {Dk} is p0-probabilistically κ-descent, then

P
(
lim inf
k→∞

∥∇f(Xk)∥ = 0
)

= 1.

The analysis is inspired by that for probabilistic trust region.
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.. Global rate

.
Lemma (Chernoff bound)
..

......

Suppose that {Dk} is p-probabilistically κ-descent and λ ∈ (0, p). Then

P

(
k−1∑
ℓ=0

Zℓ ≤ λk

)
≤ exp

[
−(p− λ)2

2p
k

]
.

.
Theorem
..

......

Suppose that {Dk} is p-probabilistically κ-descent with p > p0. Then

P

(
min
0≤ℓ≤k

∥∇f(Xℓ)∥ ≤

[
(L+ 1)β

1
2

(p− p0)
1
2κ

]
1√
k

)
≥ 1− exp

[
−(p− p0)

2

8p
k

]
.

=⇒ O(1/
√
k) decaying rate for gradient holds with overwhelmingly high

probability, matching the deterministic case (Vicente 2013).
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.. Practical probabilistic descent sets

For each k ≥ 0,

Dk is independent of the previous iterations,

Dk is a set {d1, . . . , dm} of independent random vectors uniformly
distributed on the unit sphere.
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.. Practical probabilistic descent sets

{Dk} generated in this way is probabilistically descent.

.
Proposition
..

......

Given τ ∈ [0,
√
n], {Dk} is p-probabilistically (τ/

√
n)-descent with

p = 1−
(
1

2
+

τ√
2π

)m

.

For instance,
m = 2

τ =
1

2

 =⇒ p >
1

2
= p0.
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.. Practical probabilistic descent sets: WCC bounds

Plugging κ = 1/(2
√
n) into the global rate, one obtains

.
WCC (number of iterations)
..

......
P
(
Kϵ ≤

⌈
4(L+ 1)2β

p− p0
(nϵ−2)

⌉)
≥ 1− exp

[
−β(p− p0)(L+ 1)2

2p
(nϵ−2)

]
.

What about the number of function evaluations?

.
WCC (number of function evaluations)
..

......
P
(
Kf

ϵ ≤ 2

⌈
4(L+ 1)2β

p− p0
(nϵ−2)

⌉)
≥ 1− the tiny tail.

=⇒ O(nϵ−2) with overwhelmingly high probability, better than the
deterministic case O(n2ϵ−2) (Vicente 2013).
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.. The competition

Relative performance: PSS v.s. Random polling sets (n = 40)

D⊕ 2n n+ 1 n/4 2 1

arglina 3.42 10.30 6.01 1.88 1.00 –
arglinb 20.50 7.38 2.81 1.85 1.00 2.04

broydn3d 4.33 6.54 3.59 1.28 1.00 –
dqrtic 7.16 9.10 4.56 1.70 1.00 –

engval1 10.53 11.90 6.48 2.08 1.00 2.08
freuroth 56.00 1.00 1.67 1.67 1.00 4.00
integreq 16.04 12.44 6.76 2.04 1.00 –

nondquar 6.90 7.56 4.23 1.87 1.00 –
sinquad – 1.65 2.01 1.00 1.55 –
vardim 1.00 1.80 2.40 1.80 1.80 4.30

Solution accuracy was 10−3. Averages were taken over 10 independent runs.
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.. Concluding remarks

Probabilitic DS enjoys, with overwhelmingly high probability:

the same WCC for number of iterations,

possibly better WCC for number of function evaluations.

The analysis technique can be applied to probabilistic trust region
method =⇒ O(1/

√
k) rate for gradient.

An interesting future work: randomized subspace method.
Let Gr(l,Rn) be the set of all the l-dim linear subspaces of Rn.

.
Lemma (Randomized subspace)
..

......

Suppose that S is uniformly distributed on Gr(l,Rn). Then for any
nonzero vector v ∈ Rn and constant δ ∈ (0, 1),

P

(
∥Pv∥ ≥

√
lδ

n
∥v∥

)
≥ 1− exp

[
− l

2

(
δ − 1− ln δ

)]
.
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