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Why optimize a function without using derivatives?

| started to write computer programs in Fortran at Harwell in 1962.
... after moving to Cambridge in 1976 ...l became a consultant for
IMSL. One product they received from me was the TOLMIN package
for optimization . ..which requires first derivatives ... Their customers,
however, prefer methods that are without derivatives, so IMSL forced
my software to employ difference approximations ...| was not happy
... Thus there was strong motivation to try to construct some better
algorithms.

— M. J. D. Powell

A view of algorithms for optimization without derivatives, 2007



Because it is important and cool

- Why work on derivative-free optimization?
- Because the problems are important and cool.

— J. E. Dennis, Jr.

Reasons to study derivative-free algorithms, 2013, Toulouse, France



Derivative-free optimization (DFO)

@ Derivative-free optimization (DFO)
e Minimize a function f using function values but not derivatives.

o A typical case: f is a black box without an explicit formula.

— @
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@ Various applications

e S. Gratton, P. Laloyaux, A. Sartenaer, ‘Derivative-free optimization for
large-scale nonlinear data assimilation problems’, 2014

e S. Wild, J. Sarich, N. Schunck, ‘Derivative-free optimization for
parameter estimation in computational nuclear physics’, 2015
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Existing methods

Many derivative-free methods have been developed:
@ Trust region methods: BC-DF0, DFO, NEWUOA4, ...
@ Direct-search type methods: BFO, GPS, NOMAD, ...
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How large is large?

Perhaps foremost among the limitations of derivative-free methods is
that, on a serial machine, it is usually not reasonable to try and optimize
problems with more than a few tens of variables, although some of the
most recent techniques (NEWUOA) can handle unconstrained problems
in hundreds of variables.

— A. R. Conn, K. Scheinberg, L. N. Vicente

Introduction to Derivative-Free Optimization, 2007
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How large is large?

LINCOA is not suitable for very large numbers of variables because no at-
tention is given to any sparsity. A few calculations with 1000 variables,
however, have been run successfully overnight, and the performance of
LINCOA is satisfactory usually for small numbers of variables.

— M. J. D. Powell
Comments to LINCOA, December 2013



Subspace techniques in optimization

@ N. Gould, A. Sartenaer, Ph. L. Toint. ‘On iterated-subspace
minimization methods for nonlinear optimization’, 1994.

@ Y. Yuan, ‘Subspace techniques for nonlinear optimization’, 2007
@ Block coordinate descent
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A framework of subspace algorithms

Algorithm

Step 1. Pick the starting point xg. k£ := 0.
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A framework of subspace algorithms

Algorithm

Step 1. Pick the starting point xg. k£ := 0.
Step 2. Pick a subspace S of R™.
Step 3. Solve the subspace subproblem

i d
e s { @)

exactly or approximately, obtaining dy.
Step 4. x4 = xp +di and k:= k + 1. Goto Step 2.
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Convergence

Suppose that
o dist(V f(zk), Sk) is sufficiently small, and
@ dy is sufficiently exact,

then the subspace algorithm will converge (sufficiently fast).
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Convergence

Suppose that
o dist(V f(zk), Sk) is sufficiently small, and

@ dy is sufficiently exact,

then the subspace algorithm will converge (sufficiently fast).

All we need is

@ a good model of f around xj, and

@ a good solver for minges, f(xx + d).
We do not need derivatives.
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A practical derivative-free subspace algorithm: NEWUOAs

@ The subspace:
Sk = span{—gk, di_1},
where
gk = Vmy(x),

my, being the model at x; defined by the methodology of NEWUOA.

Ref: Y. Yuan, J. Stoer, 'A Subspace Study on Conjugate Gradient
Algorithms’, 1995

@ The subspace solver: NEWUOA.

NEWUOAs = NEWUOA + subspace



The name of the game

From: Mike Powell <M.J.D.Powell@damtp.cam.ac.uk>

Date: 2012-05-22 17:16 GMT+08:00

Subject: Re: Paper on Sobolev Seminorm

To: M.J.D.Powell@damtp.cam.ac.uk, zhangzk@lsec.cc.ac.cn
Cc: yyx@lsec.cc.ac.cn, zaikunzhang@gmail.com

Dear Zaikun,

...Congratulations on finishing your thesis. ...It is
often difficult to choose a name for a new algorithm,
and NEWUOAs does have some advantages -- there is no
need for my permission.

With best wishes,

Grandpa.




‘Perfect’ problems

@ Test ptoblems

o We take 50 unconstrained problems from the CUTEr set
o These problems are smooth and bounded from below

o The dimensions of these problems are changable

@ Performance measures

o We use the Performance Profile and Data Profile
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‘Perfect’ problems
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Noisy problems

@ We still want to solve the previous 50 CUTEr problems.

@ However, for each objective function f, we have access only to

fo(x) = f(z)(1+e), with e~ N(0,0%).

e In our experiment, o = 1073,



Noisy problems
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Noisy problems
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Nonsmooth problems

@ We minimize

F(z) = f(z) 4+ Allz[ly
for each f of the previous 50 CUTEr problems.

@ In our experiment, A = 10.



Nonsmooth problems

[--=-NEWUOA — NEWUOASs - - fminunc | [-=-NEWUOA — NEWUOAs - - fminunc

0 1 2 3 0o 5 10 15 20 25

logy(a), a = NF/NF i, B =NF/(n+1)
(a) Performance profile (b) Data profile

Figure: NEWUOA, NEWUOAs, and fminunc (n = 100, 7 = 1071)



Nonsmooth problems

[-=-NEWUOA —NEWUOASs - - fminunc | [-=-NEWUOA — NEWUOAs - - fminunc

|
0.8 ,_,_,_r’T 08
~ 0.6 e ity _o6t | . fmmm——
< o e & B
< L ol s - o=t
S04 y _-___:_A._r'r = 04 _|" o =
- ot l} it
T et R '
0.2 | o tFe=mmmr 0.2 T
1 ol
0 0
0 1 2 3 4 0 5 10 15 20 25
logy(a), a = NF/NFy, B=NF/(n+1)
(a) Performance profile (b) Data profile

Figure: NEWUOA, NEWUOAs, and fminunc (n = 100, 7 = 1072)



Nonsmooth problems

[----NEWUOA — NEWUOASs - - fminunc |

[---NEWUOA —NEWUOASs - - fminunc

’
0.8 ]—'_'—'7 0.8
_06 06
< g
S04 <04
02 |oentmmmn s T een A 02
0 0=
0 1 2 3 0 5 10 15 20 25
logy(a), a = NF/NF i, B =NF/(n+1)
(a) Performance profile (b) Data profile

Figure: NEWUOA, NEWUOAs, and fminunc (n = 100, 7 = 1073)



Large problems

Table: The performance of NEWUOAs on some 20000-dimensional problems

fstart fbest #f/n CPU (S)

ARWHEAD 5.999700E+04 0.000000E+00 8.0 32.1
CHROSEN  3.999800E+10 1.100760E—10  14.1 78.1
SPARSQUR 5.627812E+07 2.352091E—28 8.0 63.2




Conclusion

Use your information to choose a subspace before doing optimization.



